Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Vol 22, No 10 (2021)
View or download the full issue PDF (Russian)

SYSTEM ANALYSIS, CONTROL AND INFORMATION PROCESSING

507-517 542
Abstract

The article is devoted to solving the problem of analysis and synthesis of a control system with a fuzzy controller by the phase plane method. The nonlinear transformation, built according to the Sugeno fuzzy model, is approximated by a piecewise linear characteristic consisting of three sections: two piecewise linear and one piecewise constant. This approach allows us to restrict ourselves to three sheets of phase trajectories, each of which is constructed on the basis of a second-order differential equation. Taking this feature into account, the technique of "stitching" of three sheets of phase trajectories is considered and an analytical base is obtained that allows one to determine the conditions for "stitching" of phase trajectories for various variants of piecewise-linear approximation of the characteristics of a fuzzy controller. In view of the specificity of the approximated model of the fuzzy controller used, useful analytical relations are given, with the help of which it is possible to calculate the time of motion of the representing point for each section with the involvement of the numerical optimization apparatus. For a variant of the approximation of three sections, a technique for synthesizing a fuzzy controller is proposed, according to which the range of parameters and the range of input signals are determined, at which an aperiodic process and a given control time are provided. On the model of the automatic control system of the drive level of the mechatronic module, it is shown that the study of a fuzzy system by such an approximated characteristic of a fuzzy controller gives quite reliable results. The conducted studies of the influence of the degree of approximation on the quality of control show that the approximated characteristic of a fuzzy controller gives a slight deterioration in quality in comparison with the smooth characteristic of a fuzzy controller. Since the capabilities of the phase plane method are limited to the 2nd order of the linear part of the automatic control system, the influence of the third order on the dynamics of the system is considered using the example of a mechatronic module drive. It is shown that taking into account the electric time constant leads to overshoot within 5-10 %. Such overshoot can be eliminated due to the proposed recommendations for correcting the static characteristic of the fuzzy controller.

518-526 418
Abstract

The synthesis of information and energy schemes is posed as an extreme problem, the purpose of which is a weighted directed graph of the minimum length from the input value to the output value of the device. The nodes of the graph are the physical effects included in the given database, and the branches are the input and output values of the effects. Nodes and branches are mathematically defined by diagonal multidimensional matrices, whose elements are determined by the dimensions of the quantities in the selected system of physical coordinates with a given number of basic units of measurement. The weight or resource intensity of the graph elements is determined by the norm of the corresponding matrices. The resulting circuit is suitable for use in technical documentation to explain the operating principle of the device, as well as for patent protection.

In the enhanced formulation of the extreme problem, restrictions are introduced on the numerical values of the input and output values of the effect and its dynamic properties in the form of the transfer function of the effect. In this case, the size of the transfer matrices of nodes and branches is expanded by one. As a result, the transfer matrix of the effect contains information not only about the dynamic properties of the effect, but also about the dimensions of the physical quantities at its input and output.

In a detailed example, the case of searching for the operating principle of a measuring-converting device of a pressure sensor with an electric current output is considered. To simplify the geometric representation of graph vectors on a plane, the problem is considered for a two-dimensional system of physical quantities with basic units of length and time. The calculation of the resource capacity is carried out according to the scheme of dimensional simulation, in which the phase variables of the differential equation enter with their physical dimensions. According to the numerical value of the resource capacity, you can compare different versions of the implementation of the operating physical principle of the device.

AUTOMATION AND CONTROL TECHNOLOGICAL PROCESSES

527-536 417
Abstract

With the growth of the population, the issue of food supply of cities with high-quality agricultural crops becomes urgent. Supply problems arising from this can be solved with the use of industrial greenhouse complexes with artificial lighting and groundless technologies. The development of these complexes makes the task of developing a control system to automate the cultivation processes urgent. Real industrial greenhouse complexes have a significant number of operations with the direct participation of personnel, which can be automated: control of the greenhouse microclimate, lighting, watering and preparation of the nutrient solution composition. This paper presents the architecture of a distributed control system for industrial greenhouse complexes. The system is built on a modular basis and is divided into three levels. The developed architecture is based on the use of standard modules, which makes the control system flexible and scalable. The paper also presents the basic design ratios, with the help of which it is possible to determine the required number of modules for the three levels of the proposed architecture. The use of wireless data transmission between modules based on LoRa technology allows you to abandon the laying of an information bus and at the same time deploy the system over large areas. Control of the system and its parameters is possible through direct human interaction with the interface of the control module or through remote interaction through the cloud. The architecture includes 3 types of executive modules, one combined sensor module and a control module. Each of the executive modules functions according to a given algorithm, and its parameters are controlled by a control module, based on a given growing program and information from sensors. This feature allows you to increase the reliability of the system and continue working in the event of a loss of communication with the cloud, as well as to exclude emergencies in the event of a loss of communication between the modules. The developed solutions make it possible to adapt the proposed control system for greenhouse complexes of various configurations and growing principles.

ROBOT, MECHATRONICS AND ROBOTIC SYSTEMS

537-546 380
Abstract

A biologically-inspired approach to robot route following is presented. The ant of the genus Formica rufa (a red forest ant) is used as a model species. These ants actively use collective foraging, unlike many other ant species. The scout ant remembers the route to food and can transmit information about the food location to foraging ants. Foragers can independently reach this place using this data and return home. The basis of the proposed method is the memorization the way by visual landmarks and fuzzy control. The animate path description model consists of a sequence of scenes and includes compass to account for the direction. The behavior of the animate-scout is implemented using an algorithm that simulates the foraging behavior of ants. The animate-forager performs actions to reproduce the route, applying the developed set of rules. The forager behavior is based on the same principles as that of a scout. But the scout remembers the scenes, and the forager recognizes and compares the visible scene and the scene from the route description. The actions of animates are presented in the form of elementary behavioral procedures. Each behavioral procedure is implemented using a finite state machine. The experiments for solving the foraging problem were carried out using a modeling system based on the ROS framework. The simulation results confirm the effectiveness of the proposed method. The method does not require large computing power and advanced sensory capabilities from the robot. It can also be used in reconnaissance and patrol tasks.

547-552 496
Abstract

The paper deals with a problem of modeling of the dynamics of a parallel cable-driven robot with the inclusion of structural nonlinearity of cables in a mathematical model. Mathematical model is implemented in a computer model with the possibility of using of symbolic calculations. Parallel cable robots as a type of robotics have been developing in the last two or three decades. The research in the theoretical field was being carried out and the mathematical model of the cable system was being refined with the spread of the practical use of cable robots. This is a non-trivial task to draw up a dynamic model of a cable-driven robot. Cable-driven robots are highly nonlinear systems, because of the main reason for the nonlinearity is the properties of the cable system. As an element of a mechanical system, the cable or the wire rope is a unilateral constraint, since the cable works only for stretching, but not for compression. Thus, the cables are structurally nonlinear elements of the system. On the other hand, cables have the property of sagging under their own weight. Thus, the cables are geometrically nonlinear elements of the system. Under the condition of a payload mass that is utterly greater than the mass of each cable, the cables can be considered strained without sagging and geometric nonlinearity can be neglected. Since symbolic computations can be used in a computer model which implements a mathematical model of the dynamics of a robot, in such a way it must provide the possibility of symbolic computations with the condition of structural nonlinearity. The main aim of this work is to develop a method that ensures the inclusion of the structural nonlinearity of the cable system in the mathematical model. It is supposed to consider the possibility of implementation of the computer model with symbolic computations. The problem of including a mathematical model of cables as unilateral constraints in the model of highly loaded cable robots is considered. The justification for including the activation functions in a system of differential equations of dynamics of cable-driven robot is formulated. A model of wire ropes as unilateral constraints is represented via including the activation functions in a system of differential equations. With using of the proposed method, numerical solution of a problem of forward dynamics has been obtained for high-loaded parallel cable-driven robot.

DYNAMICS, BALLISTICS AND CONTROL OF AIRCRAFT

553-560 399
Abstract

The paper deals with the problem of estimating the projections of the wind velocity in flight. The proposed method allows to obtain estimates for three projections of wind speed in the normal Earth coordinate system using data from the satellite navigation system, as well as on-board aerometric measurements of airspeed, angles of attack and glide. The main idea underlying the method is that satellite measurements of three aircraft velocity projections relative to the Earth’s coordinate system are very accurate (errors usually do not exceed 0.2 m/s). This makes it possible to use satellite velocity measurements as a kind of reference, just as in practical metrology, in order to assess the errors of measurement tools, they are compared with a standard, that is, a significantly more accurate measurement tool. In order to implement this approach not in a metrological laboratory, but on board an aircraft, it is proposed to use the relationships known from the flight dynamics between the velocity projections in the Earth’s and associated coordinate systems, the angles of attack and glide, and the wind speed. Then, the three wind speed projections are assigned unknown parameters, which are found using parameter identification. It is assumed that the wind has a constant speed and direction in the processed section of the flight. The accuracy characteristics of the proposed algorithm were evaluated based on the data obtained on the flight simulator of a modern training aircraft. In the course of simulation, random measurement errors were generated at the levels corresponding to the flight experiment. The influence of the type of maneuvers on the accuracy the three wind speed projections estimates was also studied. It is shown that for all considered maneuvers, that is "barrel", "snake", stepwise inputs, the errors in estimating the horizontal components of wind speed generally do not exceed 5 %, the vertical component 10 %, with the duration of the sliding processing interval of 0.5 and 1.0 s, which allows not only to estimate the constant wind speed, but also to track its change.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)