Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Parametric Identification of the Mathematical Model of the Omnidirectional Mobile Robot KUKA youBot

Abstract

The object of the study is a mobile robot KUKA youBot. Because of two pairs of mecanum-wheels its platform has full omnidirectional motion capabilities. We consider ideal contact of the wheel rollers and the floor. Under this assumption a complete (kinematics and dynamics) non-holonomic model of the system is developed. The dynamical model of the mecanum-wheeled robot consider mass eccentricity of its platform and linear viscous friction in platform-and-wheel and wheel-and-roller joints. The motion equations are derived using Appel's equations in terms of longitudinal and transversal velocities of the robot platform center, and rotational velocity of the platform. Values of the robot parameters (coefficients in the equations of motion) are not available and have to be determined. Calibration motions, such that all parameters are observable on them and it is possible to decompose identification problem, are designed. The physical robot inputs and outputs are respectively the motor torques and the wheel rotational velocities (for each wheel). Using measurements of them and kinematics and dynamics relations longitudinal, transversal, and rotational velocities of the platform and generalized control forces in the equations of motion are computed. Because of the presence of the unmesaurable accelerations the equations of the robot motion can not be used directly for parameter estimation as a robot estimation model. To avoid the accelerations in the estimation model a filter technique is used. The "inputs" to the estimation model are the filtered versions of longitudinal, transversal, and rotational velocities of the platform. The estimation model "outputs" are filtered generalized control forces. The estimate of the parameters is generated by continuous-time recurrent least squares algorithm (LSM-estimator). Using experimental data measured on series of calibration motions the robot parameters is estimated.

About the Authors

B. I. Adamov
National Research University "Moscow Power Engineering Institute"
Russian Federation


A. I. Kobrin
National Research University "Moscow Power Engineering Institute"
Russian Federation


References

1. Ilon B. E. Wheels for a course stable selfpropelling vehicle movable in any desired direction on the ground or some other base (Patent Sweden) B60B 19/12 (20060101); B60b 019/00, REF/3876255, November 13, 1972.

2. Adascalitei F., Doroftei I. Practical applications for mobile robots based on Mecanum wheels - a systematic survey // The Romanian Review Precision Mechanics, Optics & Mechatronics. 2011. N. 40. P. 21-29.

3. Doroftei I., Grosu V., Spinu V. Omnidirectional Mobile Robot - Design and implementation // Bioinspiration and Robotics Walking and Climbing Robots. Ed. by Maki K. Habib. I-Tech Education and Publishing, 2007. P. 511-528.

4. Abdelrahman M., Zeidis I., Bondarev O., Adamov B., Becker F., Zimmermann K. A Description of the Dynamics of a Four-Wheel Mecanum Mobile System as a Basis for a Platform Concept for Special Purpose Vehicles for Disabled Persons // 58-th Ilmenau Scientific Colloquium - Shaping the Future by Engineering. - Ilmenau: 2014. URL: http://www.db-thueringen. de/servlets/DerivateServlet/Derivate-30822/ilm1-2014iwk-041.pdf, свободный. (Дата обращения: 20.05.2017).

5. Hendzel Z., Rykala L. Modeling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the Use of Lagrange Equations of the Second Kind / Z. Hendzel // Int. J. of Applied Mechanics and Engineering. 2017. Vol. 22, N. 1. P. 81-99. DOI: 10.1515/ijame-2017-0005

6. Зобова А. А., Татаринов Я. В. Динамика экипажа с роликонесущими колесами // Прикладная математика и механика. 2009. Т. 73, № 1. С. 13-22.

7. Килин А. А., Бобыкин А. Д. Управление тележкой с омниколесами на плоскости // Нелинейная динамика. 2014. Т. 10, № 4. С. 473-481.

8. Борисов А. В., Килин А. А., Мамаев И. С. Тележка с омниколесами на плоскости и сфере // Нелинейная динамика. 2011. Т. 7, № 4 (Мобильные роботы). С. 785-801.

9. Martynenko Yu. G., Formal'skii A. M. On the Motion of a Mobile Robot with Roller-Carrying Wheels // Journal of Computer and Systems Sciences. 2007. Vol. 46, N. 6. P. 976-983.

10. Маркеев А. П. Теоретическая механика. М., Ижевск: Регулярная и хаотическая динамика, 2007. 592 с.

11. Голубев Ю. Ф. Функция Аппеля в динамике систем твердых тел // Препринты ИПМ им. Келдыша. 2014. № 58. С. 1-16.

12. Адамов Б. И. Применение аппарата неголономных связей в задачах идентификации параметров и управления движением: дис.. канд. физ.-мат. наук: 01.02.01 [Место защиты: Моск. гос. ун-т им. М. В. Ломоносова], М., 2016. 206 с.

13. Slotine J. J. E., Li W. Applied Nonlinear Control. Prentice-Hall, 1991. 461 p.

14. Ioannou P. A., Sun J. Robust Adaptive Control. Courier Corporation, 2012. 821 p.

15. Степанов О. А. Основы теории оценивания с приложениями к задачам обработки навигационной информации. Часть 2. Введение в теорию фильтрации. СПб.: Изд. ГНЦ РФ ОАО "Концерн "ЦНИИ "Электроприбор" 2012. 417 с.


Review

For citations:


Adamov B.I., Kobrin A.I. Parametric Identification of the Mathematical Model of the Omnidirectional Mobile Robot KUKA youBot. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(4):251-258. (In Russ.)

Views: 884


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)