Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

A Problem of the Software Implementation of the Execution Level Control Actions of a Heavy Autonomous Mobile Robot

https://doi.org/10.17587/mau.16.822-828

Abstract

Heavy vehicles are an important class of the multi-purpose mobile ground vehicles. According to an expert opinion, development of the heavy mobile robots (mobots) based on HTVs will boost the efficiency of different purpose HTVs. It should be underlined that most of the domestic and foreign mobot solutions are usually based on a remote control, when a specially trained expert uses a cable or wireless liaison to control a mobot's spatial motion and other functionalities from a control station. Thus, the individual control method, in which certain functions of a Control station operator can be delegated to the onboard control system, is nowadays of huge interest worldwide. For this reason, within a mobot, besides the remote control modes, the individual control modes can be implemented, which are carried out by the onboard control system only, without any direct involvement of a control station operator. That means formalization of the expert knowledge acquired by human crew members in the form of a set of time diagrams of the operating members' configuration. There are many works dedicated to development of the executive level control actions of small and medium autonomous mobots. However, the achieved results are almost inapplicable for development of the executive level controls for the heavy autonomous mobots. To a great extent this is due to the fact that there are many uncertainties concerning the movement process of the mobots of the aforesaid class. Such uncertainties include imperfect dynamics model of the mobot, complexity of interaction between the robot's running gear and the movement surface, etc. This article is dedicated to the software of the mobot execution level control actions in the standalone mode. Employment of the methods of the situation control and formalization of the expert knowledge made it possible to implement the software for the execution level control actions in the form of a set of coherent time diagrams showing variation of the operating members' configuration in the conditions of uncertainties.

About the Authors

O. A. Tyagunov
Moscow State University of Information Technology, Radio Engineering and Electronics (MIREA)
Russian Federation


M. A. Teplov
Moscow State University of Information Technology, Radio Engineering and Electronics (MIREA)
Russian Federation


References

1. Бурдаков С. Ф., Мирошник И. В., Стельмаков Р. Э. Системы управления движением колесных роботов. СПб.: Наука, 2001. 227 с.

2. Мартыненко Ю. Г. Управление движением мобильных колесных роботов // Фундаментальная и прикладная математика. 2005. Т. 11. Вып. 8. С. 29-80.

3. Емельянов С. Н., Платонов А. К., Ярошевский В. С. Система управления полноприводного трехколесного движителя // Мобильные роботы и мехатронные системы. М.: Изд-во МГУ, 2000. С. 89-99.

4. Ploeg J., Vissers John P. M., Nijmeijer H. Control design for an overactuated wheeled mobile robot // 4th IFAC Symposium on Mechatronics Systems. Eds. IFAC, Heidelberg, Germany, 2006. P. 127-132.

5. Braunl T. Embedded robotics: mobile robot design and applications, Springer Verlag, 2006, 210 p.

6. Calisia D., Iocchi L., Nardia D., Scalzoa C. M., Ziparoa V. A. Context-based design of robotic systems // Robotics and Autonomous Systems. 2008. Vol. 56, N. 11. P. 992-1003.

7. Тягунов О. А., Теплов М. А. Настройка типовых регуляторов для стабилизации скорости движения мобильного робототехнического комплекса с использованием технологии построения Парето-оптимальных решений // Мехатроника, автоматизация, управление. 2013. № 4. С. 19-25.

8. Тягунов О. А., Теплов М. А. Парето-оптимальная настройка типовых регуляторов в системе стабилизации курса мобильного робототехнического комплекса // Мехатроника, автоматизация, управление. 20i4. № 9. С. 23-29.

9. Bekker M. G. Introduction to Terrain-Vehicle Systems. Ann Arbor, MI: University of Michigan Press, 1969. 566 p.

10. Wong J. Y. Theory of ground vehicle. N.Y.: John Wiley, 1978. 232 p.

11. Wong J. Y. Terramechanics and off-road vehicle engineering. L: Elsevier, 2010. 468 p.

12. Забавников Н. А. Основы теории транспортных гусеничных машин. М.: Машиностроение, 1975. 448 с.

13. Поспелов Д. А. Ситуационное управление: теория и практика. М.: Наука, 1986. 268 с.

14. Катунский А. М. Вождение танков. М.: Воениздат, 1976. 176 с.

15. Кондрашина Е. Ю., Литвинцева Л. В., Поспелов Д. А. Представление знаний о времени и пространстве в интеллектуальных системах. М.: Наука, Физматлит. 1989. 328 с.

16. Приобретение знаний: Пер. с япон. / Под ред. С. Осуги, Ю. Саэки. М.: Мир, 1990. 304 с.

17. URL: www.robsim.dynsoft.ru.

18. URL: www.umlab.ru.

19. Alberg J. H., Nilson E. H., Walsh J. L. The theory of splines and their applications N.Y. Lon.: Academic Press, 1967. 316 p.

20. Солодовников В. В., Филимонов Н. Б. Динамическое качество систем автоматического управления. М.: МГТУ им. Н. Э. Баумана, 1987. 84 с.

21. Boltyanski V. G., Poznyak A. S. The robust maximum principle. Birkhauser, 2012. 455 p.


Review

For citations:


Tyagunov O.A., Teplov M.A. A Problem of the Software Implementation of the Execution Level Control Actions of a Heavy Autonomous Mobile Robot. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(12):822-828. (In Russ.) https://doi.org/10.17587/mau.16.822-828

Views: 439


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)