Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Multi-Agent System for Detection of the Moving Obstacles and Movement Planning for the Mobile Robot Systems

https://doi.org/10.17587/mau.16.307-313

Abstract

The topic of this article is an off-line movement system for the mobile robots. Its main goal is to ensure their movement from one point to another in a partially determined environment with static and mobile obstacles. Several systems are described. They are calculation of the impact of a potential force field, path assessment based on a neural network, avoiding collision system and a multi-agent system architecture for detection of obstacles and mobile robot control. The article presents mobile robot agents, which process data concerning the environment, communicate with each other and allow a robot to avoid the static and dynamic obstacles. Besides that, the most important task for a robot is movement in a partially determined environment, in which the obstacles' coordinates are unknown for the system. From a technical point of view, navigation in a dynamic context is the next set of actions: a robot is given a certain trajectory from point A to point В and then it will be able to deviate from a certain route. The task is difficult because a mobile robot has its own design and kinematic restrictions. In crowded places there are many people. Consequently, there numerous moving obstacles to be avoided, i.e. the robot movement involves maneuvering and even escort of persons to the point of destination (department of a shopping center or museum exhibit). From a technical point of view, in order to avoid collision of a mobile platform with the objects their force fields can be used. The experimental results of the developed system are presented below.

About the Authors

P. V. Stepanov
Astrakhan State Technical University, Astrakhan, 414056, Russian Federation
Russian Federation


I. A. Shcherbatov
Astrakhan State Technical University, Astrakhan, 414056, Russian Federation
Russian Federation


References

1. Голубкин И. А., Кирилин С. А., Щербатов И. А. Принципы разработки мультимедийных прикладных роботизированных устройств // Вестник Астраханского государственного технического университета. Сер. Управление, вычислительная техника и информатика. 2010. № 2. С. 153-157.

2. Khatib O. Real-time obstacle avoidance for manipulators and mobile robots // The International Journal of Robotics Research. 1986. V. 5 (1). P. 90-98.

3. Borenstein J., Koren Y. The vector field histogram-fast obstacle avoidance for mobile robots // IEEE Transactions on Robotics and Automation. 1991. V. 7 (3). P. 278-288.

4. Piaggio M., Sgorbissa A. AI-CART: an algorithm to incrementally calculate artificial potential fields in real-time // Proc. IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA '99. 1999. P. 238-243.

5. Koren Y., Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation // Proc. IEEE International Conference on Robotics and Automation. 1991. V. 2. Р. 1398-1404.

6. Arkin R. C. Motor schema based mobile robot navigation // The International Journal of Robotics Research. 1989. V. 8 (4). P. 92-112.

7. Elfes A. Using occupancy grids for mobile robot perception and navigation, Computer. 1989. V. 22 (6). P. 46-57.

8. Ulrich I., Borenstein J. VFH+: reliable obstacle avoidance for fast mobile robots // Proc. IEEE International Conference on Robotics and Automation. 1998. V. 2. P. 1572-1577.

9. Slack M. Navigation templates: mediating qualitative guidance and quantitative control in mobile robots // IEEE Transactions on Systems, Man and Cybernetics. 1993. V. 23 (2). P. 452-466.

10. Simmons R. The curvature-velocity method for local obstacle avoidance // Proc. IEEE International Conference on Robotics and Automation. 1996. V. 4. Р. 3375-3382.

11. Zhang F., O'Connor A., Luebke D., Krishnaprasad P. Experimental study of curvature-based control laws for obstacle avoidance // Proc. IEEE International Conference on Robotics and Automation, ICRA '04. 2004. V. 4. Р. 3849-3854.

12. Ogren P., Leonard N. A convergent dynamic window approach to obstacle avoidance // IEEE Transactions on Robotics. 2005. V. 21 (2). P. 188-195.

13. Damas B., Santos-Victor J. Avoiding moving obstacles: the forbidden velocity map // IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009. P. 4393-4398.

14. Arras K., Persson J., Tomatis N., Siegwart R. Real-time obstacle avoidance for polygonal robots with a reduced dynamic window // Proc. IEEE International Conference on Robotics and Automation, ICRA '02. 2002. V. 3. P. 3050-3055.

15. Lapierre L., Zapata R., Lepinay P. Simultaneous path following and obstacle avoidance control of a unicycle-type robot // IEEE International Conference on Robotics and Automation. 2007. P. 2617-2622.

16. Aicardi M., Casalino G., Bicchi A., Balestrino A. Closed loop steering of unicycle like vehicles via lyapunov techniques // Robotics Automation Magazine. 1995. V. 2 (1). P. 27-35.

17. Soetanto D., Lapierre L., Pascoal A. Adaptive, non-singular path-following control of dynamic wheeled robots // Proc. 42nd IEEE Conference on Decision and Control. 2003. V. 2. P. 1765-1770.

18. Quinlan S., Khatib O. Elastic bands: connecting path planning and control // Proc. IEEE International Conference on Robotics and Automation. 1993. V. 2. P. 802-807.

19. Brock O., Khatib O. Elastic strips: a framework for motion generation in human environments // The International Journal of Robotics Research. 2002. V. 21 (12). P. 1031-1052.

20. Lamiraux F., Bonnafous D., Lefebvre O. Reactive path deformation for nonholonomic mobile robots // IEEE Transactions on Robotics. 2004. V. 20 (6). P. 967-977.

21. Sugihara K. Approximation of generalized voronoi diagrams by ordinary voronoi diagrams // CVGIP: Graphical Models and Image Processing. 1993. V. 55. P. 522-531.

22. Morasso P., Sanguineti V. Computational maps and target fields for reaching movements // Self-organization, Computational Maps, and Motor Control. Advances in Psychology. 1997. V. 119. P. 507-546.

23. Piaggio M., Sgorbissa A., Vercelli G., Zaccaria R. Fusion of sensor data in a dynamic representation // Proc. of the First Euro-micro Workshop on Advanced Mobile Robot. 1996. P. 10-16.

24. Ющенко А. С. К теории деятельности эргатических мехатронных систем // Мехатроника. 2000. № 3. С. 2-11.

25. Киселев Д. В., Ющенко А. С. Нечеткое управление движением мобильных роботов // Вестник МГТУ им. Н. Э. Баумана. Сер. Приборостроение. 2001. № 1. С. 86-99.

26. Киселев Д. В., Ющенко А. С., Вечканов В. В., Коротаев Ю. А. Система нечеткого управления конфигурацией шасси мобильного робота // Матер. 12-й науч.-техн. конф. "Экстремальная робототехника". СПб.: Изд-во СПбГТУ, 2002. С. 119-130.

27. Тимофеев А. В., Юсупов Р. М. Принципы построения интегрированных систем мультиагентной навигации и интеллектуального управления мехатронными роботами // Information Technologies & Knowledge. 2011. V. 5. N. 3. Р. 237-244.

28. Васильев И. А. Построение карт для мобильного робота // Автоматизация в промышленности. 2011. № 12.

29. Картавцев К. В., Мелехова О. Н., Тимченко С. В. Модель детерминированной сети роботов // Доклады ТУСУР. 2010. № 1 (21).

30. Васильев И. А. Построение траекторий движения для колесного мобильного робота, снабженного лазерным сканирующим дальномером // Тр. XXI Междунар. науч.-техн. конф. "Экстремальная робототехника". 2010.

31. Зенкевич С. Л., Минин А. А. Построение карты мобильным роботом, оснащенным лазерным дальномером, методом рекуррентной фильтрации. // Мехатроника, автоматизация, управление. 2007. № 8. С. 5-12.


Review

For citations:


Stepanov P.V., Shcherbatov I.A. Multi-Agent System for Detection of the Moving Obstacles and Movement Planning for the Mobile Robot Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(5):307-313. (In Russ.) https://doi.org/10.17587/mau.16.307-313

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)