Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Mobile Robot's Movement on Vertical and Horizontal Surfaces and Slopes in the Conditions of External Disturbances and Existing Moving Objects

https://doi.org/10.17587/mau.16.166-173

Abstract

Mobile robot's motion control on different uneven surfaces under the influence of the external forces in unidentified environment has been analyzed. The mobile robotic platform consists of two parts - the external one and internal one. The relative movement of these parts causes movement of the robotic platform. The robot has pneumatic power source and a set of suction caps for different walls. The environment may include various moving and static obstacles which robot should avoid while moving. The robotic platform has its safe zone defined by robot's and obstacles' speed limits to prevent a crash. Any moving obstacle has its own trajectory and overall dimensions, which could be calculated by processing the data from the vision system. The vision system of the robot consists of a set of sensors: a laser scanner, an ultrasonic sensor and a camera. The robot's control system receives complex data from the sensors and calculates the linear and angular velocities of the robotic platform and the nearest obstacles, and, using its database, decides what behavior model should be applied. Different situations of the robot's and obstacles' relative positions with various values of the relative speed were analyzed. The strategy of the roundabout ways uses the data from the robot's sensors. The motion control algorithms for detouring of the moving and static obstacles were proposed. They envision different situations, which can happen on a wall while the robot moves to the point of destination.

About the Authors

V. G. Gradetsky
Institute for Problems in Mechanics named A. Yu. Ishlinski of the Russian Academy of Sciences, 119526, Moscow, Russian Federation
Russian Federation


M. M. Knyazkov
Institute for Problems in Mechanics named A. Yu. Ishlinski of the Russian Academy of Sciences, 119526, Moscow, Russian Federation
Russian Federation


E. A. Semionov
Institute for Problems in Mechanics named A. Yu. Ishlinski of the Russian Academy of Sciences, 119526, Moscow, Russian Federation
Russian Federation


A. N. Sukhanov
Institute for Problems in Mechanics named A. Yu. Ishlinski of the Russian Academy of Sciences, 119526, Moscow, Russian Federation
Russian Federation


References

1. Градецкий В. Г., Вешников В. Б., Калиниченко С. В., Кравчук Л. Н. Управляемое движение мобильных роботов по произвольно расположенным в пространстве поверхностям. М.: Наука, 2001. 369 с.

2. Chernousko F. L., Gradetsky V. G. Principles of movement and problem of dynamics of mobile robots. Sourcebook of the International Exhibition Congress "Mechatronics and Robotics", MIR-07, LenExpo, 2007. P. 89-90.

3. Balakguer C. Robotics and Automation in Construction. Croatia: In-Teh, 2008. P. 295-306.

4. Градецкий В. Г., Князьков М. М., Фомин Л. Ф., Чащухин В. Г. Механика миниатюрных роботов. М.: Наука, 2010. 271 с.

5. Bridge В., H. E. Leon Rodriguez, Mondal S. C., Sattar T. Р. Field trials of a cell of climbing cooperating robots for fast and flexible manufacturing of large scale engineering structures // Proc. of the CLAWAR 2009 Internat. Conf., edited by O. Tosun, H. Akin, M. O. Tokhi, G. S. Virk. Istanbul, World Scientific Publishing. Р. 801-810.

6. Shang J., Bridge В., Sattar T., Mondal S., Brenner A. Development of a climbing robot for the NDT of long weld lines // Industrial Robot: An International Journal. V. 35, Iss. 3, May (208). Р. 217-223.

7. Yoned K., Ota Y., Hirano K., Hirose S. Development of a light-weight wall climbing quadruped with reduced degree of freedom // Proc. of CLAWAR 2001 International Conference. September, 2001. Professional Engineering Published Ltd., London UK. P. 907-912.

8. Luk B. L., Collie A. A., Billingsley J. Robug II: an intelligent wall climbing robot // Proc. of the IEEE Internat. Conf. on Robotics and Automation, Sacramento, California, USA. 1991. V. 3. P. 2342-2347.

9. Grieco J. C., Prieto M., Armada M., Gonzalez de Santos Р. A six-legged climbing robot for high payloads // Proc. of the 1998 IEEE Internat. Conf. on Control Applications, Trieste, Italy. 1998. V. 1. P. 446-450.

10. Akhtaruzzaman M., N. Izzati Bt Samsuddin, N. Bt Umar, Rahman M. Design and development of a wall climbing Robot and its control system // Proc. of the 12th Internat. Conf. on Computers and Information Technology, Dhaka, Bangladesh. 2009. P. 309-313.

11. Fu Y., Li Z., Wang S. A wheel-leg hybrid wall climbing robot with multi-surface locomotion ability // Proc. of the IEEE Internat. Conf. on Mechatronics and Automation. 2008. P. 1393-1398.

12. Zhang Y., Dodd T., Atallah K., Lyne I. Design and optimization of magnetic wheel for wall and ceiling climbing robot // Proc. of the Internat. Conf. on Mechatronics and Automation, Xi'an, China, 2010.

13. Minakata H., Hayashibara Y., Ichizawa K., Horiuchi Т., Fukuta M., Fujita S., Kaminaga H., Irje K., Sakamoto H. A method of single camera robocup humanoid robot localization using cooperation with walking control // Proc. of the 10th IEEE Internat. Workshop on Advanced Motion Control. 2008. P. 50-55.

14. Junhong J., Indiveri G., Ploeger P., Bredenfeld A. An omnivision based self-localization method for soccer robot // Proc. of the IEEE Intelligent Vehicles Symposium. 2003. P. 276-281.

15. Calabrese F., Indiveri G. An Omni-Vision Triangulation-Like Approach to Mobile Robot Localization // Proc. of the IEEE Internat. Symposium on Intelligent Control, Limassol, Cyprus. 2005. P. 604-609.

16. Gradetsky V. G., Veshnikov V. B., Chashchukhin V. G. Simulation using a mobile multilink robot with a virtual reality vision system // Using robots in hazardous environments. Wood head Published Limited, 2011. P. 499-519.

17. Deport M., Floquest T., Perruquetti W., Kokosy A., Palos J. A decentralized planning architecture for a swarm of mobile robots // Using robots in hazardous environments. Woodhead Published Limited, 2011. P. 575-590.

18. Shenata H. H., Schlattman J. Adaptive Mobile Robot Path Planning Based Algorithm for Dynamic Environments // Adaptive mobile robotics. Proc. of 13 CLAWAR Conference, Baltimore, USA, 23-26 July 2012. P. 145-153.

19. Бурдаков С. Ф., Мирошник И. В., Стельмаков Р. Э. Системы управления движением колесных роботов. СПб.: Наука, 2001. 230 с.

20. Chin-Teng Lin, C. S. George Lee. Neural Fuzy Systems a Neuro-Fuzzy Sinergism to Intelligent System. NJ, USA: Prentice Hall PRT, Upper Saddle River. 795 p.

21. Попов Е. П. Теория линейных систем автоматического регулирования и управления. М.: Наука, 1978. С. 144-145.

22. Теория нелинейных и специальных систем управления. М.: Высш. шк., 1986. 504 с.

23. Кулешев В. С., Лакота Н. А. Динамика систем управления манипуляторами. М.: Энергия, 1971. 304 с.

24. Park J. H., and Kang J. Y. Fuzzy-Logic Controller for a two-link Flexible Manipulator // Proc.g of 2nd control conference, Seoul, Korea, July 1997. V. 3. P. 435-438.


Review

For citations:


Gradetsky V.G., Knyazkov M.M., Semionov E.A., Sukhanov A.N. Mobile Robot's Movement on Vertical and Horizontal Surfaces and Slopes in the Conditions of External Disturbances and Existing Moving Objects. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(3):166-173. (In Russ.) https://doi.org/10.17587/mau.16.166-173

Views: 514


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)