Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Hybrid Search Method for Solving the Inverse Kinematics of a Multilink Manipulator

https://doi.org/10.17587/mau.19.464-473

Abstract

The solution of the inverse kinematics problem of the manipulator is considered. The inverse kinematics problem of multi-link manipulators is a multi-extremal optimization problem with functional and positional constraints. Global optimization algorithms are commonly used to solve that kind of tasks. In this paper the solution of the inverse kinematics problem using the hybrid search method is considered. This method is a combination of genetic algorithm and simplex search. The genetic algorithm is not able to move quickly towards the optimum, but is able to find a global optimum on a multi-extremal function. Simplex search quickly moves toward a local minimum, but is not able to find a global minimum. This combination uses the strengths of both search algorithms, while covering the weaknesses. At each step of the genetic algorithm, the best individuals are selected to become the centers of simplex searches. Simplex searches improve the population of the genetic algorithm. Thus, a global extremum can be found in several steps of the genetic algorithm. For testing several redundant and non-redundant manipulators was used and for each of them several desired positions was specified. In solving the inverse kinematics problems, the hybrid algorithm showed comparable accuracy with the genetic algorithm with larger number of calls of the objective function. In addition, this algorithm is very easy to implement and there are no issues associated with the gradients of the objective function and functional limitations. This method allows us to find solutions for non-redundant and redundant manipulators.

About the Authors

R. T. Galemov
Siberian Federal University
Russian Federation


G. B. Masalsky
Siberian Federal University
Russian Federation


References

1. Chin K. W., Von Konsky B. R., Marriott A. Closed-form and generalized inverse kinematics solutions for the analysis of human motion // Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE. 1997. Vol. 5. P. 1911-1914.

2. Щербаков В. С., Корытов М. С., Котькин С. В. Методика решения обратной кинематической задачи грузоподъемного крана // Вестник Сибирской государственной автомобильно-дорожной академии. 2011. № 20. С. 71-76.

3. Балакин П. Д., Шамутдинов А. Х. Решение прямой и обратной задач кинематики оригинальной части шестико-ординатного манипулятора // Альманах современной науки и образования. 2013. № 10 (77). C. 24-27.

4. Orin D. E., Schrader W. W. Efficient computation of the jacobian for robot manipulators // The International Journal of Robotics Research. 1984. Vol. 3, N. 4. P. 66-75.

5. Whitney D. E. Resolved motion rate control of manipulators and human prostheses // IEEE Transactions on man-machine systems. 1969. Vol. 10, N. 2. P. 47-53.

6. Buss S. R. Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods // IEEE Journal ofRobotics and Automation. 2004. Vol. 17. № 1-19. P. 16.

7. Welman C. Inverse kinematics and geometric constraints for articulated figure manipulation: PhD diss. Theses (School of Computing Science) / Simon Fraser University, 1993.

8. Zhao J., Badler N. I. Inverse kinematics positioning using nonlinear programming for highly articulated figures // ACM Transactions on Graphics (TOG). 1994. Vol. 13, N. 4. P. 313-336.

9. Оськин Д. А., Дыда А. А. Решение обратной задачи кинематики для манипуляционного робота методом штрафных функций // Фундаментальные исследования. 2015. Т. 4. № 11. С. 673-677.

10. Parker J. K., Khoogar A. R., Goldberg D. E. Inverse kinematics of redundant robots using genetic algorithms // Robotics and Automation, 1989. Proceedings., 1989 IEEE International Conference on. IEEE, 1989. P. 271-276.

11. Tabandeh S., Clark C. M., Melek W. A genetic algorithm approach to solve for multiple solutions of inverse kinematics using adaptive niching and clustering // Computer Science and Software Engineering. 2006. P. 63.

12. Tabandeh S., Melek W., Clark C. M. An adaptive niching genetic algorithm approach for generating multiple solutions of serial manipulator inverse kinematics with applications to modular robots // Robotica. 2010. Vol. 28, N 4. P. 493-507.

13. Kenwright B. Epigenetics & Genetic Algorithms for Inverse Kinematics // Experimental Algorithms. 2014. Vol. 9, N. 4 (39).

14. Momani S., Abo-Hammour Z. S., Alsmadi O. M. K. Solution of inverse kinematics problem using genetic algorithms // Applied Mathematics & Information Sciences. 2016. Vol. 10, N. 1. P. 225.

15. Chelouah R., Siarry P. Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions // European Journal of Operational Research. 2003. Vol. 148, N. 2. P. 335-348.

16. Ramirez A., Rubiano F. Optimization of Inverse Kinematics of a 3R Robotic Manipulator using Genetic Algorithms // World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering. 2011. Vol. 5, N. 11. P. 2236-2241.

17. Zhang L., He J., Wang S. Inverse Kinematic Solutions of Dual Redundant Camera Robot Based on Genetic Algorithm // Mathematical Problems in Engineering. 2017. Vol. 2017.

18. Aguilar O. A., Huegel J. C. Inverse kinematics solution for robotic manipulators using a CUDA-based parallel genetic algorithm // Mexican International Conference on Artificial Intelligence. Springer, Berlin, Heidelberg, 2011. P. 490-503.

19. Fan S. K. S., Liang Y. C., Zahara E. A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search // Computers & Industrial Engineering. 2006. Vol. 50, N. 4. P. 401-425.

20. Kuo H. C., Chang J. R., Shyu K. S. A hybrid algorithm of evolution and simplex methods applied to global optimization // Journal of Marine Science and Technology. 2004. Vol. 12, N. 4. P. 280-289.

21. Durand N., Alliot J. M. A combined nelder-mead simplex and genetic algorithm // Proceedings of the Genetic and Evolutionary Computation Conference GECCO. 1999. Vol. 99. P. 1-7.

22. Denavit J., Hartenberg R. S. An Iterative Method for tie Displacement Analysis of Spatial Mechanisms. 1964.

23. Chelouah R., Siarry P., Berthiau G., De Barmon B. An optimization method fitted for model inversion in non destructive control by eddy currents // The European Physical Journal Applied Physics. 2000. Vol. 12, N. 3. P. 231-238.


Review

For citations:


Galemov R.T., Masalsky G.B. Hybrid Search Method for Solving the Inverse Kinematics of a Multilink Manipulator. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(7):464-473. (In Russ.) https://doi.org/10.17587/mau.19.464-473

Views: 764


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)