Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Formalization of Tasks for Robotic Manipulators: Review and Prospects

https://doi.org/10.17587/mau.22.200-207

Abstract

This overview of the problems formulations for robotic manipulators at different abstraction levels can be used to find the causes of troubles with some types of control systems. For many variants of manipulators, for example, biomorphic ones, it is not yet possible to achieve the required quality and universality. Nevertheless these tasks are solvable, which is proved by the natural movement control systems of biological organisms. One of the reasons of the difficulties is the complexity of the formalization of motion control, which prevents the development of universal approaches. The existing formalizations were separated by functional level to facilitate analysis. The high-level problems (the division of complex motor tasks into stages) are successfully solved by general planners or logical inference procedures. The middle-level problems (the trajectory tracing according to an abstract motor task) are so far solved less efficiently. Some existing tools, as linguistic methods, can greatly facilitate solution, but require significant and very laborious formalization of conditions. Inverse problems of kinematics and dynamics, conjugation of trajectory sections and direct control of the manipulator motors with error handling are further stages of processing; the quality of known solutions is usually acceptable. Based on the data collected, it can be argued that the development of methods for solving medium-level problems, i.e. constructing the trajectory of the robot according to the description of the action, is the most important domain for the successful creation of new types of manipulator control systems.

About the Author

P. S. Sorokoumov
NRC "Kurchatov Institute"
Russian Federation

Research Engineering

Moscow



References

1. Fu K. S., Gonzalez R. C., Lee C. S. G. Robotics: control, sensing, vision, and intelligence, New York, McGraw-Hill, 1987.

2. Zhao R. Trajectory planning and control for robot manipulations, Toulouse III, Université Paul Sabatier, 2015.

3. Krechetov I. V., Poselsky I. A. The manipulator tasks planning and robotic sorting facility management, The Concepts of sustainable development of science in modern conditions. Articles of the International Scientific and Practical Conference, 2018, pp. 162—173.

4. Kartashev V. A. et al. Problems of manipulation robot control to ensure the movements safety, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, vol. 16, no. 1, pp. 24—28.

5. Monkman G. J. et al. Introduction to Prehension Technology. Robot Grippers, Wiley-VCH, 2006, pp. 1—17.

6. Aristidou A. et al. Inverse Kinematics Techniques in Computer Graphics: A Survey, Comput. Graph. Forum, John Wiley & Sons, Ltd, 2018, vol. 37, no. 6, pp. 35—58.

7. Chan Y. P. et al. A Survey on Inverse Dynamics Solvers for Cable-Driven Parallel Robots, Australasian Conference on Robotics and Automation, ACRA, 2017.

8. Coleman D. et al. Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study, arXiv e-prints, 2014, pp. arXiv:1404.3785.

9. D’Souza A., Vijayakumar S., Schaal S. Learning inverse kinematics, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics, Maui, HI, 2001, vol. 1, pp. 298—303.

10. Voinov I. V. et al. Control system for a robotic manipulator using neural network algorithms for limiting the working area of the gripper, Bulletin of the South Ural State University. Series: Computer technologies, control, electronics, 2017, vol. 17, no. 4, pp. 29—36.

11. Smirnov P. A., Yakovlev R. N. Solution of direct and inverse problems of kinematics in the positioning system of manipulator links, Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, vol. 12, pp. 732—739.

12. Valsalam V. K. et al. Constructing Controllers for Physical Multilegged Robots using the ENSO Neuroevolution Approach, Evol. Intell., 2012, vol. 5, no. 1, pp. 1—12.

13. Valsalam V., Miikkulainen R. Evolving symmetric and modular neural networks for distributed control, Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference, GECCO-200, 2009, pp. 731—738.

14. Rossi R. et al. Trajectory Generation for Unmanned Aerial Manipulators Through Quadratic Programming, IEEE Robot. Autom. Lett., 2017, vol. 2, no. 2, pp. 389—396.

15. Dijk N. J. M. Van. Generic trajectory generation for industrial manipulators, Eindhoven University of Technology, 2006.

16. Steuben J., Steele J., Turner C. NURBs for Robot Manipulator Trajectory Generation, Proceedings of the ASME Design Engineering Technical Conference, 2011, vol. 6.

17. Yi S. Y., Chung M. J. A robust fuzzy logic controller for robot manipulators with uncertainties, IEEE Trans. Syst. Man, Cybern. Part B, 1997, vol. 27, no. 4, pp. 706—713.

18. L ópez M., Arteaga-Pérez M. Fuzzy Logic Control of a Robot Manipulator in 3D Based on Visual Servoing, IFAC Proc., 2011, vol. 18.

19. Rostami Kandroodi M. et al. Control of Flexible Joint Manipulator via Reduced Rule-Based Fuzzy Control with Experimental Validation, Int. Sch. Res. Netw. ISRN Artif. Intell. Artic. ID, 2012, vol. 309687.

20. Banerjee S., Woo P. Y. Fuzzy logic control of robot manipulator, Proceedings of IEEE International Conference on Control and Applications, 1993, pp. 87—88 vol. 1.

21. Guilbert M., Wieber P., Joly L. Optimal Trajectory Generation for Manipulator Robots under Thermal Constraints, IEEE-RSJ International Conference on Intelligent Robots & Systems, Beijing, 2006.

22. Nakamura Y., Igarashi H. Manipulator trajectory generation for flexible object handling, 2008 10th IEEE International Workshop on Advanced Motion Control, 2008, pp. 143—148.

23. Pajak I. Real-Time Trajectory Generation Methods for Cooperating Mobile Manipulators Subject to State and Control Constraints, J. Intell. Robot. Syst. Theory Appl. Journal of Intelligent & Robotic Systems, 2019, vol. 93, no. 3—4, pp. 649—668.

24. L ópez M., Pérez M., Leite A. Modelado de Sistemas de Visión en 2D y 3D, un Enfoque Hacia el Control de Robots Manipuladores, 2013, vol. 17, pp. 12—21.

25. Gurko A. G., Yanchevsky I. V. Guaranteed motion control of a manipulative robot // Radioelectronics, Informatics, Control. 2014. № 2. P. 174—181.

26. Slotine J.-J. E., Li Weiping. Adaptive manipulator control: A case study, IEEE Trans. Automat. Contr., 1988, vol. 33, no. 11, pp. 995—1003.

27. Slotine J.-J. E., Li W. Applied Nonlinear Control. Prentice-Hall, 1991.

28. Kozhevnikov M. M. et al. Synthesis of trajectories for assembly and welding robots-manipulators in a working environment with obstacles, Robotics and mechatronics, 2015, vol. 3 (13), pp. 36—42.

29. Tsuji T., Morasso P. G., Kaneko M. Trajectory generation for manipulators based on artificial potential field approach with adjustable temporal behavior, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS ’96, 1996, vol. 2, pp. 438—443 vol. 2.

30. Brockett R. W. Hybrid Models for Motion Control Systems BT — Essays on Control: Perspectives in the Theory and its Applications / ed. Trentelman H. L., Willems J. C. Boston, MA, Birkhäuser Boston, 1993, pp. 29—53.

31. Brockett R. Language driven hybrid systems, Proceedings of 1994 33rd IEEE Conference on Decision and Control, 1994, vol. 4, pp. 4210—4214.

32. Liu Z. et al. Motion Description Language for Trajectory Generation of a Robot Manipulator, 2017.

33. Liu Z. et al. A New Type of Industrial Robot Trajectory Generation Component Based on Motion Modularity Technology, J. Robot, 2020, vol. 2020.

34. Gennaro S. D. I. et al. Reduction of timed hybrid systems, Discret. Event Dyn. Syst. Theory Appl., 1998, vol. 8, no. 4, pp. 343—351.

35. Barry J. L. Manipulation with Diverse Actions, Massachusetts Institute of Technology, 2013, 201 p.

36. Engel E. A. Method of intelligent computing for configuration management of a mobile robot, Bulletin of NEFU, 2015, vol. 3 (47), pp. 127—137.

37. Sorokoumov P. S. The fuzzy language models for synchronizing the multi-limbic manipulator movements, IX International Scientific and Practical Conference "Integrated models and soft computing in artificial intelligence" , Kolomna, 2019.

38. Kuvshinnikov V. S., Kovshov E. E. The use of a neural map for auxiliary control of a portal manipulator, Cloud Sci., 2018, vol. 5, no. 2, pp. 310—324.

39. Kroemer O., Niekum S., Konidaris G. A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms, ArXiv, 2019, vol. abs/1907.0.

40. Morcillo P. et al. Declarative Traces into Fuzzy Computed Answers, 2011, 170—185 p.

41. Medina J., Ojeda-Aciego M., Vojtáš P. Multi-Adjoint Logic Programming with Continuous Semantics, Lecture Notes in Computer Science, 2001, vol. 2173, pp. 351—364.

42. Shuai I., Yushchenko A. S. Dialogue control system of a robot based on the theory of finite automata, Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, vol. 20, no. 11. pp. 686—695.

43. Kofman J. et al. Teleoperation of a robot manipulator from 3D human hand-arm motion, Optomechatronic Syst., IV, 2003, vol. 5264, pp. 257.

44. da Fonseca I., Pontuschka M., Lima G. Kinematics for Spacecraft-Type Robotic Manipulators. 2019.

45. Siciliano B., Khatib O. ed. Springer Handbook of Robotics, Berlin, Heidelberg, Springer Berlin Heidelberg, 2008.


Review

For citations:


Sorokoumov P.S. Formalization of Tasks for Robotic Manipulators: Review and Prospects. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(4):200-207. https://doi.org/10.17587/mau.22.200-207

Views: 510


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)