Control of Parametrically Perturbed Objects with a Full Information
https://doi.org/10.17587/mau.22.3-11
Abstract
The objective of this paper was to justify the new synthesis method of stabilizing controller for parametrically perturbed systems,which often appear in mobile robots, aircrafts, engineering objects with non-stationary parameters, intellectual control systems with aself-learning etc. Due to the high complexity and uncertainty of these systems, the classical PID controllers are not applicable and soa full information about the object state vector is used. Controllers obtained in this way allow to minimize the integral quality criterionof the system with the worst case parameter perturbation. For this purpose, the methods of differential games and switching systemstheories were applied. Control laws are calculated by using the value function of the corresponding differential game, which can beobtained by solving the Hamilton-Jacobi-Bellman-Isaacs equations. A special set of basic functions was developed to approximate thevalue function and satisfy the boundary conditions. Finally, controller synthesis for a specific object with a nonstationary parameteris given. It significantly exceeds both the linear and fuzzy controllers in terms of quality. In the task of analyzing system qualitativecharacteristics under the worst parametric perturbation, our results are compared to the modern direct collocation methods of optimalcontrol. With the same accuracy, proposed method is two times faster for low order systems. To verify that developed controllers canbe employed in real time applications, we present computational time and memory usage in the end of the article.
Keywords
About the Authors
V. P. BerdnikovRussian Federation
Postgraduate Student
Moscow, 119454
V. M. Lokhin
Russian Federation
D. Sc, Professor
Moscow, 119454
References
1. Nowakova J., Pokorny M. Intelligent Controller Design by the Artificial Intelligence Methods, Sensors, 2020, vol. 20 (16), pp. 1—27, DOI: 10.3390/s20164454.
2. Santoso F., Garratt M. A., Anavatti S. G. State-of-theArt Intelligent Flight Control Systems in Unmanned Aerial Vehicles, IEEE Transactions on Automation Science and Engineering, 2018, vol. 15 (2), pp. 613—627, DOI: 10.1109/tase.2017.2651109.
3. Vesely V., Korosi L. Robust PI-D Controller Design for Uncertain Linear Polytopic Systems Using LMI Regions and H2 Performance, IEEE Transactions on Industry Applications, 2019, vol. 55 (5), pp. 5353—5359, DOI: 10.1109/tia.2019.2921282.
4. Chesi G. Convex Synthesis of Robust Controllers for Linear Systems With Polytopic Time-Varying Uncertainty, IEEE Transactions on Automatic Control, 2017, vol. 62 (1), pp. 337—349, DOI: 10.1109/tac.2016.2555701.
5. Jafari M., Xu H. Intelligent Control for Unmanned Aerial Systems with System Uncertainties and Disturbances Using Artificial Neural Network, Drones, 2018, vol. 2 (3), pp. 1—13, DOI: 10.3390/drones2030030.
6. Wang G., Liu X., Zhao Y., Han S. Neural Network-Based Adaptive Motion Control for a Mobile Robot with Unknown Longitudinal Slipping, Chinese Journal of Mechanical Engineering, 2019, vol. 32 (1), pp. 1—9, DOI: 10.1186/s10033-019-0373-3.
7. Zheng W., Ito T. Dynamic Surface Control—Based Adaptive Neural Tracking for Full-State Constrained Omnidirectional Mobile Robots, Advances in Mechanical Engineering, 2019, vol. 11 (4), pp. 1—14, DOI: 10.1177/1687814019846750.
8. Guechi E.-H., Belharet K., Blazic S. Tracking Control for Wheeled Mobile Robot Based on Delayed Sensor Measurements, Sensors, 2019, vol. 19 (23), pp. 1—21, DOI: 10.3390/s19235177.
9. Bedioui N., Houimli R., Besbes M. Simultaneous Sensor and Actuator Fault Estimation for Continuous-Time Polytopic LPV System, International Journal of Systems Science, 2019, vol. 50 (6), pp. 1290—1302, DOI: 10.1080/00207721.2019.1599078.
10. Berdnikov V. P. Improving the efficiency of the procedure of Lyapunov spline-functions construction for nonlinear nonstationary systems, Russian Technological Journal, 2018, vol. 6 (5), pp. 25—44 (In Russian), DOI: 10.32362/2500-316X-2018-6-5-25-44.
11. Berdnikov V. P., Lokhin V. M., Uvaysov S. U. Determination of Guaranteed Stability Regions of Systems with a PID Controller and a Parametrically Perturbed Control Object, 2019 International Seminar on Electron Devices Design and Production (SED), 23—24 April 2019. Prague, Czech Republic, DOI: 10.1109/SED.2019.8798412.
12. Berdnikov V. P., Lokhin V. M. Synthesis of Guaranteed Stability Regions of a Nonstationary Nonlinear System with a Fuzzy Controller, Civil Engineering Journal, 2019, vol. 5 (1), pp. 107—116, DOI: 10.28991/cej-2019-03091229.
13. Plaskacz S. Value functions in control systems and differential games: a viability method, Torun, Poland, Nicolaus Copernicus University, 2003, 126 p.
14. Yong J. Differential Games: A Concise Introduction, World Scientific, 2015, 322 p.
15. L’Afflitto A. Differential games, asymptotic stabilization, and robust optimal control of nonlinear systems, IEEE Conf. Decision and Control, 2016, vol. 2, pp. 1933—1938, DOI: 10.1109/CDC.2016.7798547.
16. L’Afflitto A. Differential games, continuous Lyapunov functions, and stabilization of non-linear dynamical systems, IET Control Theory & Applications, 2017, vol. 11 (15), pp. 2486—2496, DOI: 10.1049/iet-cta.2017.0271.
17. Galperin E. A. The cubic algorithm for global games with application to pursuit-evasion games, Computers and Mathematics with Applications, 1993, vol. 26 (6), pp. 13—31, DOI: 10.1016/0898-1221(93)90114-B.
18. Wang S., Gao F., Teo K. L. An upwind finite-difference method for the approximation of viscosity solutions to HamiltonJacobi-Bellman equations, IMA Journal of Mathematical Control and Information, 2000, vol. 17 (2), pp. 167—178, DOI:10.1093/imamci/17.2.167.
19. Falcone M., Ferretti R. Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods, Journal of Computational Physics, 2002, vol. 175, pp. 559—575, DOI: 10.1006/jcph.2001.6954.
20. Beard R. W., McLain T. W., Wen J. T. Successive Galerkin approximation of the Isaacs equation, IFAC Proceedings Volumes, 1999, vol. 32 (2), pp. 2071—2076, DOI:10.1016/s1474-6670(17)56351-x.
21. Cecil T., Qian J., Osher S. Numerical methods for high dimensional Hamilton—Jacobi equations using radial basis functions, Journal of Computational Physics, 2004, vol. 196 (1), pp. 327—347, DOI: 10.1016/j.jcp.2003.11.010.
22. Falcone M., Makridakis C. Numerical methods for viscosity solutions and applications, World Scientific Publishing Company, 2001, 249 p., DOI: 10.1142/4781.
23. Fornberg B., Flyer N. Solving PDEs with radial basis functions, Acta Numer, 2015, vol. 24, pp. 215—258, DOI: 10.1017/s0962492914000130.
24. Subbotin A. I. Generalized Solutions of First Order PDEs, Birkhäuser, Boston, 1995, 314 p., DOI:10.1007/978-1-4612-0847-1.
25. Bardi. M., Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Basel, 1997, 574 p., DOI: 10.1007/978-0-8176-4755-1.
26. Yong J. A zero sum differential game in a finite duration with switching strategies, SIAM Journal on Control and Optimization, 1990, vol. 28 (5), pp. 1234—1250, DOI: 10.1137/0328066.
27. Yong J. Differential game with switching strategies, Journal of Mathematical Analysis and Applicationcs, 1990, vol. 145 (2), pp. 455—469, DOI: 10.1016/0022-247X(90)90413-A.
28. Nie Y., Faqir O. J., Kerrigan E. C. ICLOCS2: Try this Optimal Control Problem Solver Before You Try the Rest, 2018 UKACC 12th International Conference on Control, 5—7 September 2018, Sheffield, DOI: 10.1109/CONTROL.2018.8516795.
Review
For citations:
Berdnikov V.P., Lokhin V.M. Control of Parametrically Perturbed Objects with a Full Information. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(1):3-11. https://doi.org/10.17587/mau.22.3-11