Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Predictive Coupled Control of the Road Train Longitudinal and Lateral Motion on a Curved Path

https://doi.org/10.17587/mau.21.630-638

Abstract

In this paper, we consider the problem of a road train path-following on a curved path with an optimal velocity. To solve the problem, we propose a control algorithm based on the coupled model predictive control strategy. Model predictive control assumes the computation of a control sequence by solving an optimal control problem on a finite horizon for a current state of a nonlinear time-varying system. We use the truck steering angle and road train acceleration as control inputs. We describe the road train longitudinal and lateral dynamics using an implicit nonlinear model in continuous time. To derive a discrete linear time-varying state-space prediction model describing the deviations of system dynamics from a reference path we use the Euler method to discretize the original system and compute analytical formulae for its Jacobian by MATLAB Symbolic Math Toolbox. We calculate the reference path and corresponding reference values of the state vector applying the well-known geometric techniques, which utilize the path coordinates and its curvature information. We take the reference values of a truck and a semitrailer yaw angles to be equal. Thus, the reference value of the jackknifing angle is zero. The calculations of reference velocity take into account its skid and rollover limits. To validate the proposed path-following algorithm on the road train we design a simulation model in Simulink. The paper presents the simulation results of testing the movement of a road train along a given path for various values of the reference speed. We show that the algorithm provides high enough reference path-following accuracy, vehicle reference speed tracking, and low values of the jackknifing angle on the speed values up to 18 m/s and curvature radii down to 250 m. The proposed algorithm can be used in ADAS-systems and autonomous vehicles development.

About the Authors

G. R. Galimova
Kazan Federal University; KAMAZ PTC
Russian Federation
Kazan


V. G. Volkov
Kazan Federal University; KAMAZ PTC
Russian Federation
Kazan


I. Z. Akhmetzyanov
Kazan Federal University; KAMAZ PTC
Russian Federation
Kazan


References

1. Bosch Automotive Handbook. 5th Edition. Stuttgart. Robert Bosch GmbH. 2000. 960 p.

2. Cheng, H. Autonomous Intelligent Vehicles Theory Algorithms and Implementation, London, Springer Science & Business Media, 2011.

3. Ziegler J., Dang T., Franke U., Lategahn H., Bender P., Schrei ber M., Strauss T., Appenrodt N., Keller C., Kaus E., Stiller C., Herrtwich R., Rabe C., Pfeiffer D., Lindner F., Stein F., Erbs F., Enzweiler M., Knoppel C., Hipp J., Haueis M., Trepte M., Brenk C., Tamke A., Ghanaat M., Braun M., Joos A., Fritz H., Mock H., Hein M., Zeeb E. Making Bertha drive — An autonomous journey on a historic route, IEEE Intelligent Transportation Systems Magazine, 2014, vol. 6, no. 2, pp. 8—20, available at: http://citeseerx.ist.psu.edu/ viewdoc/download?doi = 10.1.1.640.1737&rep=rep1&type=pdf.

4. Xiao L., Gao F. A comprehensive review of the development of adaptive cruise control systems, Vehicle System Dynamics, 2010, vol. 48, no. 10, pp. 1167—1192. URL: https://www.researchgate.net/profile/Lingyun_Xiao/publication/2453096.

5. Nouveliere L., Mammar S. Experimental vehicle longitudinal control using a second order sliding mode technique, Control Engineering Practice, 2007, vol. 15, no. 8, pp. 943—954, available at: http://aramis.iup.univ-evry.fr:8080/~smam/publications/publis2003/ACC2003-1.pdf.

6. El Majdoub K., Giri F., Ouadi H., Dugard L., Zara F. Vehicle longitudinal motion modeling for nonlinear control, Control Engineering Practice, 2012, vol. 20, no. 1, pp. 69—81, available at: http://www.edream.ma:8080/jspui/bitstream/123456789/1666/1/ Vehicle%20longitudinal%20motion%20modeling%20for%20nonlinear%20control.pdf.

7. Volkov V. G., Demyanov D. N. Synthesis and Approximation of Control in Adaptive Cruise Control Systems of Commercial Vehicles, Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, 19(11), 707—713 (in Russian).

8. Snider, J. M. Automatic steering methods for autonomous automobile path tracking, Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08. 2009, available at: https://www. ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_ Autonomous_Automobile_Path_Tracking.pdf.

9. Thrun S., Montemerlo M., Dahlkamp H., Stavens D., Aron A., Diebel J., Fong P., Gale J. Halpenny M., Hoffmann G., Lau K., Oakley C., Palatucci M., Pratt V., Stang P., Strohband S., Dupont C., Jendrossek L., Koelen C., Markey C., Rummel C., Niekerk J., Jensen E., Alessandrini P., Bradski G., Davies B., Ettinger S., Kaehler A., Nefian A., Mahoney P. Stanley: The robot that won the DARPA Grand Challenge, Journal of field Robotics, 2006, vol. 23, no. 9, pp. 661—692, available at: https://onlinelibrary.wiley.com/doi/ pdf/10.1002/rob.20147.

10. Onieva E., Naranjo J. E., Milanés V., Alonso J., García R., Pérez J. Automatic lateral control for unmanned vehicles via genetic algorithms, Applied Soft Computing, 2011, vol. 11, no. 1, pp. 1303—1309, available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7 10.4608&rep=rep1&type=pdf.

11. Alekseev K. B., Malyavin A. A., Palaguta K. A. Comparative analysis of model predictive and fuzzy control of vehicle motion, Mekhatronika, Avtomatizatsiya, Upravlenie, 2009, no. 5, pp. 36—45 (in Russian).

12. Nehaoua L., Nouvelière L. Backstepping based approach for the combined longitudinal-lateral vehicle control, Intelligent Vehicles Symposium (IV), 2012 IEEE, 2012, pp. 395—400, available at: http://nehsetl.free.fr/nehaoua2012.pdf.

13. Menhour L., d’Andréa-Novel B., Boussard C., Fliess M., Mounier H. Algebraic nonlinear estimation and flatness-based lateral/longitudinal control for automotive vehicles, Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, 2011, pp. 463—468, available at: http://citeseerx.ist.psu. edu/viewdoc/download?doi=10.1.1.940.6891&rep=rep1&type=pdf.

14. Attia R., Orjuela R., Basset M. Combined longitudinal and lateral control for automated vehicle guidance, Vehicle System Dynamics, 2014, vol. 52, no. 2, pp. 261—279, available at: https:// hal.archives-ouvertes.fr/hal-01027591/document.

15. Falcone P. Borrelli F., Tseng H. E., Asgari J., Hrovat D. A hierarchical model predictive control framework for autonomous ground vehicles, American Control Conference, 2008. IEEE, 2008, pp. 3719—3724, available at: https://folk.ntnu.no/skoge/prost/proceedings/acc08/data/papers/1111.pdf.

16. Keviczky T., Falcone P., Borrelli F., Asgari J., Hrovat D. Predictive control approach to autonomous vehicle steering, American Control Conference, 2006. IEEE, 2006, pp. 6, available at: https://borrelli.me.berkeley.edu/pdfpub/pub-27.pdf.

17. Kühne F., Lages W. F., Silva J. M. G. Mobile robot trajectory tracking using model predictive control, II IEEE latin-american robotics symposium, 2005, available at: https://pdfs.semanticscholar. org/390f/82152011352de1d74185b3581167a30909f8.pdf.

18. Zeilinger M. Real-time model predictive control: Ph.D. Thesis, ETH Zurich, 2011, 177 p.

19. Afanasiev L. L., Dyakov A. B., Ilarionov V. A. Vehicle Design Safety, Moscow, 2013, 212 p.

20. Volkov V. G., Demyanov D. N., Karabtsev V. S. Development and Research of the Mathematical Model of Planar Motion of a Vehicle with a Semitrailer, Mathematical Models and Computer Simulations, 2018, vol. 10, no. 1, pp. 99—110 (in Russian).

21. Rajamani R. Vehicle dynamics and control, Springer Science & Business Media, 2012, 496 p.

22. Olsson C. Model complexity and coupling of longitudinal and lateral control in autonomous vehicles using model predictive control, 2015.

23. SP 42.13330.2011 Urban planning. Planning and development of cities and settlements. Updated version of SNiP 2.07.01-89 * (as Amended and Amended N 1) (in Russian).


Review

For citations:


Galimova G.R., Volkov V.G., Akhmetzyanov I.Z. Predictive Coupled Control of the Road Train Longitudinal and Lateral Motion on a Curved Path. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(11):630-638. (In Russ.) https://doi.org/10.17587/mau.21.630-638

Views: 711


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)