Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Hardware & Software Solution for Rapid Reconfiguration of Heterogeneous Robots

https://doi.org/10.17587/mau.19.387-395

Abstract

In cases of emergency situations, accidents, disasters, in process of reclamation of Arctic and Antarctic, exploration other planets the maximum uncertainty in terms of anticipated working conditions makes it very hard or even impossible to plan and to choose the needed robotics. To perform tasks in such conditions, one should use robots with variable structure, i.e. modular mobile robots, which should have hardware and software capable of rapid reconfiguration. We propose a hardware and software solution for information-measuring and control system (IMCS) of a heterogeneous modular robot, which is sufficiently simple to implement and which is able to reconfigure automatically. It is necessary to require that each module's construction must correspond to its functional purpose and its own IMCS must provide informational and executional functionality. We implement distributed control in such structure, similar to multi-agent systems, via decoupling computational and control process of robot goal function execution into functional subprocesses and distributing them between microcomputers of modules. System-wide robot control is running on a separate module, which plays role of a supervisor for other modules. Executive module is fully responsible for functional subprocess realization. We propose usage of a broadband, reliable and low-cost interface on top of Ethernet standard to organize intermodular interaction. The choice of Ethernet standard enables local-area like design of robot IMCS with IMCS of modules as its nodes. One should use microcontrollers or, as maximum, singleboard computers, i.e. embedded systems as computational devices for IMCS of modules. Informational intermodular interaction is developed using ZeroMQ library with addition of UDP protocol with broadcast messages. This solution led to development of the specification for embedded systems (in contrast to Robotic Operating System), i.e. a unified system of driver development rules. Drivers are a set of control instructions and network protocols to create module's application programming interface (API). Proposed hardware and software solution was tested successfully using laboratory model of heterogeneous modular mobile robot, consisting of module-supervisor, wheeled transport module, close-range sensors module and power module (batteries). A new method of movement planning using two-dimension vector fields is proposed for transport module which is implemented as a full-functional mechatronics device.

About the Authors

V. P. Andreev
MSTU "STANKIN"; ML "Sensorika"; IINET RSUH
Russian Federation


V. L. Kim
MSTU "STANKIN"
Russian Federation


P. F. Pletenev
MSTU "STANKIN"
Russian Federation


References

1. Бабич А. В., Баранов А. Г., Калабин И. В. и др. Промышленная робототехника / Под ред. Я. А. Шифрина. М.: Машиностроение, 1982. 415 с.

2. Воробьев Е. И., Козырев Ю. Г., Царенко В. И. Промышленные роботы агрегатно-модульного типа. М.: Машиностроение, 1988. 240 с.

3. Лопота А. В., Юревич Е. И. Этапы и перспективы развития модульного принципа построения робототехнических систем // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. СПб.: Изд-во Политехнического ун-та. 2013. № 1 (164). C. 98-103.

4. Юревич Е. И. Роботы ЦНИИ РТК на Чернобыльской АЭС и развитие экстремальной робототехники. СПб.: Издво СПбГПУ, 2004. 264 с.

5. Murata S., Yoshida E., Kamimura A., Kurokawa H., Tomita K. & Kokaji S. M-TRAN: selfreconfigurable modular robotic system // IEEE/ASME Transactions on Mechatronics. 2002. N. 7 (4). P. 432-441.

6. stergaard E. H., Kassow K., Beck R. & Lund H. H. Design of the ATRON lattice-based self-reconfigurable robot // Autonomous Robots. 2006. N. 21 (2). P. 165-183.

7. Guifang Qiao, Guangming Song, Jun Zhang, Hongtao Sun, Weiguo Wang & Aiguo Song. Design of Transmote: a Modular Self-Reconfigurable Robot with Versatile Transformation Capabilities // Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. 2012. P. 1331-1336.

8. Lyder A. H., Stoy K., Mendoza-Garcia R.-F., Larsen J. C. & Hermansen P. On sub-modularization and morphological heterogeneity in modular robotics // Intelligent Autonomous Systems of Advances in Intelligent Systems and Computing. Springer Berlin Heidelberg, 2013. Vol. 193, N. 12. P. 649-661.

9. Baca J., Ferre M. & Aracil R. A heterogeneous modular robotic design for fast response to a diversity of tasks // Robotics and Autonomous Systems, 2012. Vol. 60, N. 4. P. 522-531.

10. Hancher M. D., Hornby G. S. A modular robotic system with applications to space exploration // 2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06). Pasadena, CA: Publisher "IEEE", 2006. P. 132-140.

11. Andreev V., Kim V. & Pletenev P. The principle of full functionality - the basis for rapid reconfiguration in heterogeneous modular mobile robots // Proceedings of the 28th DAAAM International Symposium. P. 0023-0028. B. Katalinic (Ed.), Published by DAAAM International. 2017. Vienna, Austria. DOI: 10.2507/28th.daaam.proceedings.003.

12. НОУ ИНТУИТ. Мультиагентные технологии. URL: https://www.intuit.ru /studies/courses/10618/1102/lecture/17391 (дата обращения: 17.03.2016).

13. Андреев В. П., Ким В. Л. Метод управления движением модульного мобильного робота с использованием двумерных векторных полей // Робототехника и техническая кибернетика. Санкт-Петербург: ЦНИИ РТК. 2017. № 4 (17). С. 22-27.

14. Rzevski G. Modelling large complex systems using multi-agent technology // In Proc. of 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel / Distributed Computing (SNPD2012), August 8-10, Kyoto, Japan, 2012. P. 434-437.

15. EtherCAT Technology Group, Industrial Ethernet Technologies. URL: https://www.ethercat.org/download/documents/Industrial_Ethernet_Technologies.pdf (дата обращения: 17.03.2016).

16. Ethernet POWERLINK Communication Profile Specification Version 1.2.0. URL: http://www.ethernet-powerlink.org/en/ downloads/technical-documents/ action/open-download/down-load/epsg-ds-301-v120-communication-profile-specification/ element/5158/?no_cache=1 (дата обращения: 17.03.2016).

17. ROS: an open-source Robot Operating System / Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler, Andrew Ng // ICRA workshop on open source software. 2009. Vol. 3, N. 3.2. P. 5.

18. Андреев В. П., Ким В. Л., Подураев Ю. В. Сетевые решения в архитектуре гетерогенных модульных мобильных роботов // Робототехника и техническая кибернетика. 2016. № 3 (12). С. 23-29.

19. Андреев В. П., Кирсанов К. Б. Технология многооператорного управления мобильными роботами через Интернет // Известия Южного Федерального университета. Технические науки. Ростов-на-Дону: Южный федеральный университет, 2015. № 10 (171). С. 6-17.

20. Kirsanov K. Software architecture of control system for heterogeneous group of mobile robots // 25th DAAAM International Symposium on Intelligent Manufacturing and Automation. 2014. Procedia Engineering (2015). 2015. Vol. 100. P. 216-221.

21. Hintjens P. "ZeroMQ: Messaging for Many Applications", O'Reilly Media.

22. Andreev V., Pletenev P. Organizing Intermodular Communication for Heterogeneous Modular Mobile Robot // Proceedings of the 28th DAAAM International Symposium, B. Katalinic (Ed.). Published by DAAAM International. 2017. Vienna, Austria, pp. 0474-0480. DOI: 10.2507/28th.daaam.proceedings.066.

23. Плетенев П. Ф. и др. 1/ПММВ - Протокол взаимодействия в гетерогенном модульном мобильном роботе. URL: https://asmfreak.github.io/modular_ КЛ^_Г&/1/ПММВ/ (дата обращения: 20.01.2017).

24. Андреев В. П., Тарасова В. Э. Определение формы препятствий мобильным роботом с помощью сканирующих угловых перемещений ультразвукового датчика // Мехатроника, автоматизация, управление. 2017. № 11, Т. 18. С. 759-763. DOI: 10.17587/mau.18.759-763.


Review

For citations:


Andreev V.P., Kim V.L., Pletenev P.F. Hardware & Software Solution for Rapid Reconfiguration of Heterogeneous Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(6):387-395. (In Russ.) https://doi.org/10.17587/mau.19.387-395

Views: 702


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)