Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Consecutive Compensator in Station-Keeping of a Surface Vessel

https://doi.org/10.17587/mau.21.566-574

Abstract

This paper addresses the problem of station-keeping of a surface vessel by means of the consecutive compensator approach. The horizontal motion of the vessel is described by a dynamic model. The model is set up in vessel parallel coordinates, with three degrees of freedom: longitudinal, transverse and rotational motion. It is assumed that the vessel is fully actuated, i.e. there is a sufficient number and type of actuators and a thrust allocation system to ensure full manoeuvrability. Thus, the control can be designed with the assumption of three independent inputs and three output signals. The longitudinal motion can be considered separately, but a cross-coupling exists between the transverse and rotational kinetics. There is uncertainty both in parameters and signals, due to the vessel mass, inertia, and damping, as well as the unmeasured derivatives. The proposed control ensures station-keeping when the vessel is subjected to external disturbances. The consecutive compensator, which is based on high-gain feedback, provides robustness. Stability analysis is presented considering the cross-terms as limited disturbances. This allows proof of exponential stability. Experimental results are included from the Marine Cybernetics Laboratory (MC lab) at the Centre for Autonomous Marine Operations and Systems (A MOS) at the Norwegian University of Science and Technology (Norges teknisk-naturvitenskapelige universitet, NTNU ). Two scenarios are investigated: the scaled vessel is subjected to external disturbance, and the vessel executes the " four corner test". The experiments illustrate the applicability of the method.

About the Authors

O. I. Borisov
ITMO University
Russian Federation

Candidate of Technical Sciences, Associate Professor

St. Petersburg, 197101



A. R. Dahl
Norwegian University of Science and Technology
Norway
Trondheim


A. A. Pyrkin
ITMO University
Russian Federation
St. Petersburg, 197101


F. B. Gromova
ITMO University
Russian Federation
St. Petersburg, 197101


R. Skjetne
Norwegian University of Science and Technology
Norway
Trondheim


References

1. Balchen J. G., Jenssen N. A., Mathisen E., Sælid S. A Dynamic Positioning System Based on Kalman Filtering and Optimal Control, Modeling, Identification and Control, 1980, 1(3), pp. 135—163, available at: https://doi.org/10.4173/mic.1980.3.1.

2. Breivik M., Kvaal S., Østby P. From Eureka to K-Pos: Dynamic Positioning as a Highly Successful and Important Marine Control Technology, IFAC 10th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC), 2015, vol. 48 (16), available at: https://doi.org/10.1016/j.ifacol.2016.01.001.

3. Skjetne R., Imsland L., Løset S. The A rctic DP research project: Effective stationkeeping in ice, Modeling, Identification and Control, 2014, 35(4), pp. 191—210, available at: https://doi.org/10.4173/mic.2014.4.1.

4. Romamenko N. G., Golovko S. V., Stuydentov R. I. Dynamic positioning system for optimal control of a pusher with a towed load, Vestnik Astrakhanskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2016, vol. 62, no. 2, pp. 24—29 (in Russian).

5. Bobtsov A. A. Robust Output-Control for a Linear System with Uncertain Coefficients, Avtomatika i Telemehanika, 2002, no. 11, pp. 108—117 (in Russian).

6. Fradkov A. L. Synthesis of adaptive system of stabilization of linear dynamic plants, Avtomatika i Telemehanika, 1974, no. 12, pp. 96—103 (in Russian).

7. Fradkov A. L. Quadratic Lyapunov functions in the problem of adaptive stabilization of a linear dynamic object, Sib. mat. zhurn, 1976, no. 2, pp. 436—446 (in Russian).

8. Vlasov S. M., Borisov O. I., Gromov V. S., Pyrkin A. A., Bobtsov A. A. A lgorithms of Adaptive and Robust Output Control for a Robotic Prototype of a Surface Vessel, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, 17(1), pp. 18—25 (in Russian), doi: 10.17587/mau.17.18-25.

9. Johansen T. A., Hovd M. The Department of Engineering Cybernetics at NTNU: From 1994 Into the Future, Modeling, Identification and Control, 2009, 30(3), pp. 127—132, available at: https://doi.org/10.4173/mic.2009.3.3.

10. Frederich P. Constrained Optimal Thrust A llocation for C/S Inocean Cat I Drillship (Master thesis), Norwegian University of Science and Technology, 2016.

11. Lyngstadaas O. N., Sæterdal T. E., Sørensen M. E.N., Breivik M. Improvement of Ship Motion Control Using a Magnitude-Rate Saturation Model, IEEE Conference on Control Technology and Applications (CCTA), 2018, available at: https://doi.org/10.1109/CCTA.2018.8511451.

12. Fossen T. I. Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley & Sons, 2011, available at: https://doi.org/10.1002/9781119994138.

13. Bobtsov A. A., Faronov M. V., Furtat I. B., Pyrkin A. A., Arustamov S. A. Adaptive Control of Linear MIMO Systems, Proceedings of the 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), 2014, pp. 584—589, available at: https://doi.org/10.1109/ICUMT.2014.7002166.

14. Khalil H. K. Nonlinear Systems. 3rd ed., Pearson, 2002.

15. Slotine J.-J. E., Li W. Applied Nonlinear Control, Prentice Hall, New Jersey, 1991.

16. Sastry S. Nonlinear Systems: A nalysis, Stability, and Control, Springer-Verlag, New York, 1999, available at: https://doi.org/10.1007/978-1-4757-3108-8.

17. Young W. H. On Classes of Summable Functions and their Fourier Series, Proceedings of the Royal Society, Part A, 1912, vol. 87, pp. 225—229, available at: https://doi.org/10.1098/rspa.1912.0076.

18. Bjørnø J., Heyn H.-M., Skjetne R., Dahl A. R., Frederich P. Modeling, parameter identification and thruster-assisted position mooring of C/S Inocean CAT I Drillship, ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017, vol. 7B: Ocean Engineering, 2017, available at: https://doi.org/10.1115/OMAE2017-61896.

19. Station-Keeping by the Consecutive Compensator (2019) YouTube video, added by itmo4robots [Online], available at: https://youtu.be/HlBanvOUEJk [Accessed 2019-04-17].

20. Skjetne R., Sørensen M. E. N., Breivik M., Værnø S. A.T.,Brodtkorb A. H., Sørensen A. J., Kjerstad Ø. K., Calabrò V., Vinje B. O. AMOS DP research cruise 2016: Academic full-scale testing of experimental dynamic positioning control algorithms onboard R/ V Gunnerus, ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017, available at: https://doi.org/10.1115/OMAE2017-62045.


Review

For citations:


Borisov O.I., Dahl A.R., Pyrkin A.A., Gromova F.B., Skjetne R. Consecutive Compensator in Station-Keeping of a Surface Vessel. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(10):566-574. (In Russ.) https://doi.org/10.17587/mau.21.566-574

Views: 1353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)