S-synchronization Structural Identifiability and Identification of Nonlinear Dynamic Systems
https://doi.org/10.17587/mau.21.323-336
Abstract
About the Author
N. N. KarabutovRussian Federation
DTS, Professor
Moscow, 119454
References
1. Kalman R. E. On the general theory of control systems. Proceeding first IFAC Congress on Automatic Control, Moscow, 1960; Butterworths, London, 1961, vol. 1, pp. 481—492.
2. Lee R. С. K. Optimal estimation, identification, and control, Cambridge, Mass., MIT Press, 1964, 340 p.
3. Elgerd O. I. Control systems theory, N. Y., McGraw-Hill, 1967. 562 p.
4. Walter E. Identifiability of state space models, Berlin, Germany, Springer-Verlag, 1982, 197 p.
5. Audoly S., D’Angio L., Saccomany M. P., Cobelli C. Global identifiability of linear compartmental models — a computer algebra algorithm, IEEE Trans. Automat. Contr., 1998, vol. 45, pp. 36—47.
6. Avdeenko T. V. Identification of linear dynamic systems with use parametrical space separators, Automatics and program engineering, 2013, no. 1(3), p. 16—23 (in Russian).
7. Bodunov N. A. Introduction to the theory of local parametrical identifiability, Differential equations and management processes, 2012, no. 2, 137 p. (in Russian).
8. Balonin N. A. Theorems of identifiability, St. Petersburg, Politekhnika publishing house, 2010 (in Russian).
9. Krasovskiy A. A. ed. Reference book on automatic control theory, Moscow, Nauka, 1987 (in Russian).
10. Stigter J. D., Peeters R. L. M. On a geometric approach to the structural identifiability problem and its application in a water quality case study, Proceedings of the european control conference, 2007, Kos, Greece, 2007, pp. 3450—3456.
11. Chis O.-T., Banga J. R., Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods, PLOS ONE, 2011, vol. 6, iss. 4, pp. 1—16.
12. Saccomani M. P., Thomaseth K. Structural vs practical identifiability of nonlinear differential equation models in systems biology. Bringing mathematics to life, Dynamics of mathematical models in biology. Ed. A. Rogato, V. Zazzu, M. Guarracino, Springer, 2010, pp. 31—42.
13. Villaverde A., Barreiro A., Papachristodoulou A. Structural identifiability of dynamic systems biology models, PLOS Computational Biology, 2016, vol. 12, no. 10, pp. 1—22.
14. Raue A., Karlsson J., Saccomani M. P., Jirstrand M., Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatic, 2014, vol. 30, no. 10, pp. 1440—1448.
15. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied statistics. Study of relationships, Moscow, Finansy i statistika, 1985 (in Russian).
16. Busvelle E., Gauthier J.-P. New results on identifiability of nonlinear systems, 2nd IFAC symposium on system, structure and control, 2004, pp. 8—10.
17. Lee R. С. K. Optimal estimation, identification, and control, MIT Press Observability and structural identifiability of nonlinear biological systems, Complexity, 2019, vol. 2019, Article ID 8497093, 12 p.
18. Noh J., Lee S. On the identifiability conditions in some nonlinear time series model, Revstat-Statistical Journal, 2016, vol. 14, no. 4, pp. 395—413.
19. Villaverde A. F., Banga J. R. Structural properties of dynamic systems biology models: identifiability, reachability, and initial conditions, Processes, 2017, vol. 5, no. 29, pp. 2—16.
20. Karabutov N. About structural identifiability of nonlinear dynamic systems under uncertainty // Global journal of science frontier research: A Physics and space science, 2018, vol. 18, iss. 11 (vers. 1.0), pp. 51—61.
21. Karabutov N. Structural identification of dynamic systems with hysteresis, International journal of intelligent systems and applications, 2016, vol. 8, no. 7, pp. 1—13.
22. Karabutov N. Structural methods of design identification systems, Nonlinearity problems, solutions and applications. Vol. 1, Ed. L. A. Uvarova, A. B. Nadykto, A. V. Latyshev, New York, Nova Science Publishers, Inc, 2017, pp. 233—274.
23. Kazakov Y. E., Dostupov B. G. Statistical dynamics of nonlinear automatic systems, Moscow, Fizmatgis, 1962, 278 p. (in Russian).
24. Furasov V. D. Stability of motion, estimation and stabilization, Moscow, Nauka, 1977, 248 p. (in Russian).
25. Karabutov N. Structural identification of nonlinear dynamic systems, International journal of intelligent systems and applications, 2015, vol. 7, no. 9, pp. 1—11.
26. Choquet G. L’enseignement de la geometrie, Paris, Hermann, 1964. 173 p.
27. Bozhokin S. V., Parshin D. A. Fractals and Multifractals, Moscow-Izhevsk, Scientific Publishing Centre Regular and Chaotic Dynamics", 2001, 128 p. (in Russian).
28. Danilin A. N., Kuznetsova E. L., Kurdumov N. N., Rabinsky L. N., Tarasov S. S. A modified Bouc-Wen model to describe the hysteresis of non-stationary processes, PNRPU Mechanics Bulletin, 2016, no. 4, рр. 187—199 (in Russian).
29. Ismail M., Ikhouane F., Rodellar J. The hysteresis BoucWen model, a survey, Arch Comput Methods Eng, 2009, vol. 16, pp. 161—188.
Review
For citations:
Karabutov N.N. S-synchronization Structural Identifiability and Identification of Nonlinear Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(6):323-336. (In Russ.) https://doi.org/10.17587/mau.21.323-336