Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

S-synchronization Structural Identifiability and Identification of Nonlinear Dynamic Systems

https://doi.org/10.17587/mau.21.323-336

Abstract

An approach to the structural identifiability analysis of nonlinear dynamic systems under uncertainty is proposed. We have shown that S-synchronization is the necessary condition for the structural identifiability of a nonlinear system. Conditions are obtained for the design of a model which identifies the nonlinear part of the system. The method is proposed for the obtaining of a set which contains the information on the nonlinear part. A class of geometric frameworks which reflect the state of the system nonlinear part is introduced. Geometrical frameworks are defined on the synthesized set. The conditions are given for the structural indistinguishability of geometric frameworks on the set of S-synchronizing inputs. Local identifiability conditions are obtained for the nonlinear part. We are shown that a non-synchronizing input gives an insignificant geometric framework. This leads to a structural non-identifiability of the system nonlinear part. The method is proposed for the estimation of the structural identifiability the nonlinear part of the system. Conditions for parametric identifiability of the system linear part are obtained. We show that the structural identifiability is the basis for the structural identification of the system. The hierarchical immersion method is proposed for the estimation of nonlinear system structural parameters. The method is used for the structural identification of a system with Bouc-Wen hysteresis.

About the Author

N. N. Karabutov
MIREA — Russian Technological University
Russian Federation

DTS, Professor

Moscow, 119454



References

1. Kalman R. E. On the general theory of control systems. Proceeding first IFAC Congress on Automatic Control, Moscow, 1960; Butterworths, London, 1961, vol. 1, pp. 481—492.

2. Lee R. С. K. Optimal estimation, identification, and control, Cambridge, Mass., MIT Press, 1964, 340 p.

3. Elgerd O. I. Control systems theory, N. Y., McGraw-Hill, 1967. 562 p.

4. Walter E. Identifiability of state space models, Berlin, Germany, Springer-Verlag, 1982, 197 p.

5. Audoly S., D’Angio L., Saccomany M. P., Cobelli C. Global identifiability of linear compartmental models — a computer algebra algorithm, IEEE Trans. Automat. Contr., 1998, vol. 45, pp. 36—47.

6. Avdeenko T. V. Identification of linear dynamic systems with use parametrical space separators, Automatics and program engineering, 2013, no. 1(3), p. 16—23 (in Russian).

7. Bodunov N. A. Introduction to the theory of local parametrical identifiability, Differential equations and management processes, 2012, no. 2, 137 p. (in Russian).

8. Balonin N. A. Theorems of identifiability, St. Petersburg, Politekhnika publishing house, 2010 (in Russian).

9. Krasovskiy A. A. ed. Reference book on automatic control theory, Moscow, Nauka, 1987 (in Russian).

10. Stigter J. D., Peeters R. L. M. On a geometric approach to the structural identifiability problem and its application in a water quality case study, Proceedings of the european control conference, 2007, Kos, Greece, 2007, pp. 3450—3456.

11. Chis O.-T., Banga J. R., Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods, PLOS ONE, 2011, vol. 6, iss. 4, pp. 1—16.

12. Saccomani M. P., Thomaseth K. Structural vs practical identifiability of nonlinear differential equation models in systems biology. Bringing mathematics to life, Dynamics of mathematical models in biology. Ed. A. Rogato, V. Zazzu, M. Guarracino, Springer, 2010, pp. 31—42.

13. Villaverde A., Barreiro A., Papachristodoulou A. Structural identifiability of dynamic systems biology models, PLOS Computational Biology, 2016, vol. 12, no. 10, pp. 1—22.

14. Raue A., Karlsson J., Saccomani M. P., Jirstrand M., Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems, Bioinformatic, 2014, vol. 30, no. 10, pp. 1440—1448.

15. Aivazyan S. A., Yenyukov I. S., Meshalkin L. D. Applied statistics. Study of relationships, Moscow, Finansy i statistika, 1985 (in Russian).

16. Busvelle E., Gauthier J.-P. New results on identifiability of nonlinear systems, 2nd IFAC symposium on system, structure and control, 2004, pp. 8—10.

17. Lee R. С. K. Optimal estimation, identification, and control, MIT Press Observability and structural identifiability of nonlinear biological systems, Complexity, 2019, vol. 2019, Article ID 8497093, 12 p.

18. Noh J., Lee S. On the identifiability conditions in some nonlinear time series model, Revstat-Statistical Journal, 2016, vol. 14, no. 4, pp. 395—413.

19. Villaverde A. F., Banga J. R. Structural properties of dynamic systems biology models: identifiability, reachability, and initial conditions, Processes, 2017, vol. 5, no. 29, pp. 2—16.

20. Karabutov N. About structural identifiability of nonlinear dynamic systems under uncertainty // Global journal of science frontier research: A Physics and space science, 2018, vol. 18, iss. 11 (vers. 1.0), pp. 51—61.

21. Karabutov N. Structural identification of dynamic systems with hysteresis, International journal of intelligent systems and applications, 2016, vol. 8, no. 7, pp. 1—13.

22. Karabutov N. Structural methods of design identification systems, Nonlinearity problems, solutions and applications. Vol. 1, Ed. L. A. Uvarova, A. B. Nadykto, A. V. Latyshev, New York, Nova Science Publishers, Inc, 2017, pp. 233—274.

23. Kazakov Y. E., Dostupov B. G. Statistical dynamics of nonlinear automatic systems, Moscow, Fizmatgis, 1962, 278 p. (in Russian).

24. Furasov V. D. Stability of motion, estimation and stabilization, Moscow, Nauka, 1977, 248 p. (in Russian).

25. Karabutov N. Structural identification of nonlinear dynamic systems, International journal of intelligent systems and applications, 2015, vol. 7, no. 9, pp. 1—11.

26. Choquet G. L’enseignement de la geometrie, Paris, Hermann, 1964. 173 p.

27. Bozhokin S. V., Parshin D. A. Fractals and Multifractals, Moscow-Izhevsk, Scientific Publishing Centre Regular and Chaotic Dynamics", 2001, 128 p. (in Russian).

28. Danilin A. N., Kuznetsova E. L., Kurdumov N. N., Rabinsky L. N., Tarasov S. S. A modified Bouc-Wen model to describe the hysteresis of non-stationary processes, PNRPU Mechanics Bulletin, 2016, no. 4, рр. 187—199 (in Russian).

29. Ismail M., Ikhouane F., Rodellar J. The hysteresis BoucWen model, a survey, Arch Comput Methods Eng, 2009, vol. 16, pp. 161—188.


Review

For citations:


Karabutov N.N. S-synchronization Structural Identifiability and Identification of Nonlinear Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(6):323-336. (In Russ.) https://doi.org/10.17587/mau.21.323-336

Views: 812


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)