Control of Insertion of Indenter into Viscoelastic Tissue using a Piezoelectric Drive
https://doi.org/10.17587/mau.21.304-311
Abstract
Keywords
About the Authors
I. G. GoryachevaRussian Federation
Moscow, 119192, Russian Federation
Moscow, 119526, Russian Federation
M. Z. Dosaev
Russian Federation
Moscow, 119192, Russian Federation
Y. V. Selyutskiy
Russian Federation
Moscow, 119192, Russian Federation
A. A. Yakovenko
Russian Federation
Moscow, 119526, Russian Federation
C.-H. Hsiao
Taiwan, Province of China
701, Taiwan
C.-Y. Huang
Taiwan, Province of China
701, Taiwan
M.-S. Ju
Taiwan, Province of China
701, Taiwan
C.-H. Yeh
Taiwan, Province of China
701, Taiwan
References
1. Sabarianand D. V., Karthikeyan P., Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems, Mechanical Systems and Signal Processing, 2020, 140, 106634, doi: 10.1016/j.ymssp.2020.106634.
2. Stoianovici D. et al. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot, IEEE Transactions on Biomedical Engineering, 2018, 65 (1), pp. 165—177, doi: 10.1109/TBME.2017.2697766.
3. Patil S., Burgner-Kahrs J., Webster R., Alterovitz R. Needle Steering in 3-D Via Rapid Replanning, IEEE Transactions on Robotics, 2014, 30, pp. 853—864, doi: 10.1109/TRO.2014.2307633.
4. Park Y. L. et al. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions, IEEE ASME Trans Mechatron., 2010, 15(6), pp. 906—915.
5. Onishi T., Ishido R., Takimoto T., Saito. K., Uebayashi S., Takahashi M., Ito K. Biological Tissue-Equivalent Agar-Based Solid Phantoms and SAR Estimation Using the Thermographic Method in the Range of 3—6 GHz, IEICE Transactions on Communications, 2005, 88-B(9), pp. 3733—3741.
6. McPherson T., Ueda J. A force and displacement selfsensing piezoelectric MRI-compatible tweezer end effector with an on-site calibration procedure, IEEE/ASME Trans. Mechatron., 2014, 19 (2), pp. 755—764.
7. Aranda-Lara L., Torres-García E., Oros-Pantoja R. Biological Tissue Modeling with Agar Gel Phantom for Radiation Dosimetry of 99mTc, Open Journal of Radiology, 2014, 4, pp. 44—52, available at: http://dx.doi.org/10.4236/ojrad.2014.41006.
8. Lorenzo D. D., Momi1 E. D., Dyagilev I., Manganelli R., Formaglio A., Prattichizzo D., Shoham M., Ferrigno G. Force feedback in a piezoelectric linear actuator for neurosurgery, Int. J. Med. Robot., 2011, 7 (3), pp. 268—275.
9. Oldfield M., Dini D., Giordano G., Rodriguez y Baena F. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16:5, pp. 530—543, doi: 10.1080/10255842.2011.628448.
10. Cappelleri D. J., Frecker M. I., Simpson T. W., Snyder A. Design of a PZT bimorph actuator using a metamodel-based approach, J. Mech. Des., 2002, 124 (2), pp. 354—357.
11. Argatov I., Mishuris G. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: evaluation of the rebound indentation test with application for assessing viability of articular cartilage, Mech. Res. Commun., 2011, 38 (2011), pp. 565—568.
12. Yeh C.-H. et al. Application of piezoelectric actuator to simplified haptic feedback system, Sensors and Actuators A: Physical, 2020, 303, 111820, doi:10.1016/j.sna.2019.111820.
13. Argatov I. An analytical solution of the rebound indentation problem for an iotropic linear viscoelastic layer loaded with a spherical punch, Acta Mech., 2012, 223, pp. 1441—1453.
14. Wurpts W., Twiefel J. An ultrasonic motor with intermittent contact modeled as a two degree of freedom oscillator in time domain, PAMM, 2009, vol. 9, pp. 287—288, doi: 10.1002/pamm.200910117.
15. Lyubicheva A. Closed-Form Solution of Axisymmetric Contact Problem for a Viscoelastic Base within Cycle of Increasing and Decreasing of Load on the Indenter, Journal of Friction and Wear, 2017, 38(2), pp. 138—143.
16. Mashimo T., Terashima K. Dynamic analysis of an ultrasonic motor using point contact model, Sensors and Actuators A: Physical, 2015, vol. 233, pp. 15—21, doi: 10.1016/j.sna.2015.05.009.
17. Liu Z., Yao Z., Li X., Fu Q. Design and experiments of a linear piezoelectric motor driven by a single mode, Review of Scientific Instruments, 2016, vol. 87, 115001, doi: 10.1063/1.4966251.
18. Dosaev M. Z., Selyutskiy Yu. D., Yeh C.-H., Su F.-C. Modeling Tactile Feedback Realized by Piezoelectrical Actuator, Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, vol. 19, no. 7, pp. 480—485 (in Russian), doi: 10.17587/mau.19.480-485.
19. Klimina L., Shalimova E., Dosaev M., Garziera R. Closed dynamical model of a double propeller HAWT, Procedia engineering, 2017, 199, pp. 577—582.
20. Sabarianand D. V., Karthikeyan P., Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems, Mechanical Systems and Signal Processing, 2020, 140, 106634, doi: 10.1016/j.ymssp.2020.106634.
21. Selyutskiy Y. D., Klimina L. A. Effect of nonlinear electromechanical interaction upon wind power generator behavior, AIP Conference Proceedings, 2014, 1637 (1), pp. 982—987.
22. Patil S., Burgner-Kahrs J., Webster R., Alterovitz R. Needle Steering in 3-D Via Rapid Replanning, IEEE Transactions on Robotics, 2014, 30, pp. 853—864, doi: 10.1109/TRO.2014.2307633.
23. Onishi T., Ishido R., Takimoto T., Saito. K., Uebayashi S., Takahashi M., Ito K. Biological Tissue-Equivalent Agar-Based Solid Phantoms and SAR Estimation Using the Thermographic Method in the Range of 3—6 GHz, IEICE Transactions on Communications, 2005, 88-B(9), pp. 3733—3741.
24. Aranda-Lara L., Torres-García E., Oros-Pantoja R. Biological Tissue Modeling with Agar Gel Phantom for Radiation Dosimetry of 99mTc, Open Journal of Radiology, 2014, 4, pp. 44—52, available at: http://dx.doi.org/10.4236/ojrad.2014.41006.
25. Oldfield M., Dini D., Giordano G., Rodriguez y Baena F. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16:5, pp. 530—543, doi: 10.1080/10255842.2011.628448.
26. Argatov I., Mishuris G. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: evaluation of the rebound indentation test with application for assessing viability of articular cartilage, Mech. Res. Commun., 2011, 38 (2011), pp. 565—568.
27. Argatov I. An analytical solution of the rebound indentation problem for an iotropic linear viscoelastic layer loaded with a spherical punch, Acta Mech., 2012, 223, pp. 1441—1453.
28. Lyubicheva A. Closed-Form Solution of Axisymmetric Contact Problem for a Viscoelastic Base within Cycle of Increasing and Decreasing of Load on the Indenter, Journal of Friction and Wear, 2017, 38(2), pp. 138—143.
29. Liu Z., Yao Z., Li X., Fu Q. Design and experiments of a linear piezoelectric motor driven by a single mode, Review of Scientific Instruments, 2016, vol. 87, 115001, doi: 10.1063/1.4966251.
30. Klimina L., Shalimova E., Dosaev M., Garziera R. Closed dynamical model of a double propeller HAWT, Procedia engineering, 2017, 199, pp. 577—582.
31. Selyutskiy Y. D., Klimina L. A. Effect of nonlinear electromechanical interaction upon wind power generator behavior, AIP Conference Proceedings, 2014, 1637 (1), pp. 982—987.
Review
For citations:
Goryacheva I.G., Dosaev M.Z., Selyutskiy Y.V., Yakovenko A.A., Hsiao C., Huang C., Ju M., Yeh C. Control of Insertion of Indenter into Viscoelastic Tissue using a Piezoelectric Drive. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(5):304-311. (In Russ.) https://doi.org/10.17587/mau.21.304-311