Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Control of Insertion of Indenter into Viscoelastic Tissue using a Piezoelectric Drive

https://doi.org/10.17587/mau.21.304-311

Abstract

Stereotactic operations are actively used in modern minimally invasive medicine. During such operations, a flexible needle is inserted into the internal organs, with the help of which a biopsy or a local treatment is performed. The application of such approaches in neurosurgery requires the accurate positioning of the needle tip at the target point. The present study is related to the creation of a robotic system that delivers the needle to a given point and uses drives compatible with magnetic resonance imaging devices that visualize the position of the needle. In this paper, we propose a finite-dimensional mathematical model of a mechatronic system that uses a piezoelectric drive (PED) to move the needle (cannula) along a given line. To describe the contact between the cannula and the soft tissue, a mathematical model of their interaction is developed. The contact problem involving two processes occurring during the introduction of the needle into the biological tissue is solved: the introduction of a rigid (compared to the tissue) indenter and its retention at a certain depth. Relaxation properties of the tissue are taken into account. The behavior of tissue is described using a phenomenological approach based on a modified Kelvin-Voigt model. This allowed for reducing the solution of the contact problem to the integration of a system of ordinary differential equations. One of recognized ways to develop medical robotic systems is to test their functioning using phantoms of biological tissues. For this purpose, a phantom of a porcine brain based on agar-agar is made. Experiments are carried out to indent a standard cannula into the phantom body. Based on the obtained experimental data, the parameters of the contact model are identified. An algorithm is proposed for controlling the PED frequency, which ensures the introduction of the cannula into the soft biological tissue to a given depth. Numerical simulation of the insertion of the cannula into the soft tissue using this algorithm is performed. The influence of feedback coefficients on the position and speed of the indenter on the nature of the implementation process is investigated.

About the Authors

I. G. Goryacheva
Lomonosov Moscow State University Ishlinsky Institute for Problems in Mechanics RAS
Russian Federation

Moscow, 119192, Russian Federation

Moscow, 119526, Russian Federation

 



M. Z. Dosaev
Lomonosov Moscow State University
Russian Federation
Moscow, 119192, Russian Federation



Y. V. Selyutskiy
Lomonosov Moscow State University
Russian Federation
Moscow, 119192, Russian Federation



A. A. Yakovenko
Ishlinsky Institute for Problems in Mechanics RAS
Russian Federation
Moscow, 119526, Russian Federation



C.-H. Hsiao
National Cheng Kung University
Taiwan, Province of China
701, Taiwan


C.-Y. Huang
National Cheng Kung University
Taiwan, Province of China
701, Taiwan


M.-S. Ju
National Cheng Kung University
Taiwan, Province of China
701, Taiwan


C.-H. Yeh
National Cheng Kung University
Taiwan, Province of China
701, Taiwan



References

1. Sabarianand D. V., Karthikeyan P., Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems, Mechanical Systems and Signal Processing, 2020, 140, 106634, doi: 10.1016/j.ymssp.2020.106634.

2. Stoianovici D. et al. Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot, IEEE Transactions on Biomedical Engineering, 2018, 65 (1), pp. 165—177, doi: 10.1109/TBME.2017.2697766.

3. Patil S., Burgner-Kahrs J., Webster R., Alterovitz R. Needle Steering in 3-D Via Rapid Replanning, IEEE Transactions on Robotics, 2014, 30, pp. 853—864, doi: 10.1109/TRO.2014.2307633.

4. Park Y. L. et al. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions, IEEE ASME Trans Mechatron., 2010, 15(6), pp. 906—915.

5. Onishi T., Ishido R., Takimoto T., Saito. K., Uebayashi S., Takahashi M., Ito K. Biological Tissue-Equivalent Agar-Based Solid Phantoms and SAR Estimation Using the Thermographic Method in the Range of 3—6 GHz, IEICE Transactions on Communications, 2005, 88-B(9), pp. 3733—3741.

6. McPherson T., Ueda J. A force and displacement selfsensing piezoelectric MRI-compatible tweezer end effector with an on-site calibration procedure, IEEE/ASME Trans. Mechatron., 2014, 19 (2), pp. 755—764.

7. Aranda-Lara L., Torres-García E., Oros-Pantoja R. Biological Tissue Modeling with Agar Gel Phantom for Radiation Dosimetry of 99mTc, Open Journal of Radiology, 2014, 4, pp. 44—52, available at: http://dx.doi.org/10.4236/ojrad.2014.41006.

8. Lorenzo D. D., Momi1 E. D., Dyagilev I., Manganelli R., Formaglio A., Prattichizzo D., Shoham M., Ferrigno G. Force feedback in a piezoelectric linear actuator for neurosurgery, Int. J. Med. Robot., 2011, 7 (3), pp. 268—275.

9. Oldfield M., Dini D., Giordano G., Rodriguez y Baena F. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16:5, pp. 530—543, doi: 10.1080/10255842.2011.628448.

10. Cappelleri D. J., Frecker M. I., Simpson T. W., Snyder A. Design of a PZT bimorph actuator using a metamodel-based approach, J. Mech. Des., 2002, 124 (2), pp. 354—357.

11. Argatov I., Mishuris G. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: evaluation of the rebound indentation test with application for assessing viability of articular cartilage, Mech. Res. Commun., 2011, 38 (2011), pp. 565—568.

12. Yeh C.-H. et al. Application of piezoelectric actuator to simplified haptic feedback system, Sensors and Actuators A: Physical, 2020, 303, 111820, doi:10.1016/j.sna.2019.111820.

13. Argatov I. An analytical solution of the rebound indentation problem for an iotropic linear viscoelastic layer loaded with a spherical punch, Acta Mech., 2012, 223, pp. 1441—1453.

14. Wurpts W., Twiefel J. An ultrasonic motor with intermittent contact modeled as a two degree of freedom oscillator in time domain, PAMM, 2009, vol. 9, pp. 287—288, doi: 10.1002/pamm.200910117.

15. Lyubicheva A. Closed-Form Solution of Axisymmetric Contact Problem for a Viscoelastic Base within Cycle of Increasing and Decreasing of Load on the Indenter, Journal of Friction and Wear, 2017, 38(2), pp. 138—143.

16. Mashimo T., Terashima K. Dynamic analysis of an ultrasonic motor using point contact model, Sensors and Actuators A: Physical, 2015, vol. 233, pp. 15—21, doi: 10.1016/j.sna.2015.05.009.

17. Liu Z., Yao Z., Li X., Fu Q. Design and experiments of a linear piezoelectric motor driven by a single mode, Review of Scientific Instruments, 2016, vol. 87, 115001, doi: 10.1063/1.4966251.

18. Dosaev M. Z., Selyutskiy Yu. D., Yeh C.-H., Su F.-C. Modeling Tactile Feedback Realized by Piezoelectrical Actuator, Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, vol. 19, no. 7, pp. 480—485 (in Russian), doi: 10.17587/mau.19.480-485.

19. Klimina L., Shalimova E., Dosaev M., Garziera R. Closed dynamical model of a double propeller HAWT, Procedia engineering, 2017, 199, pp. 577—582.

20. Sabarianand D. V., Karthikeyan P., Muthuramalingam T. A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems, Mechanical Systems and Signal Processing, 2020, 140, 106634, doi: 10.1016/j.ymssp.2020.106634.

21. Selyutskiy Y. D., Klimina L. A. Effect of nonlinear electromechanical interaction upon wind power generator behavior, AIP Conference Proceedings, 2014, 1637 (1), pp. 982—987.

22. Patil S., Burgner-Kahrs J., Webster R., Alterovitz R. Needle Steering in 3-D Via Rapid Replanning, IEEE Transactions on Robotics, 2014, 30, pp. 853—864, doi: 10.1109/TRO.2014.2307633.

23. Onishi T., Ishido R., Takimoto T., Saito. K., Uebayashi S., Takahashi M., Ito K. Biological Tissue-Equivalent Agar-Based Solid Phantoms and SAR Estimation Using the Thermographic Method in the Range of 3—6 GHz, IEICE Transactions on Communications, 2005, 88-B(9), pp. 3733—3741.

24. Aranda-Lara L., Torres-García E., Oros-Pantoja R. Biological Tissue Modeling with Agar Gel Phantom for Radiation Dosimetry of 99mTc, Open Journal of Radiology, 2014, 4, pp. 44—52, available at: http://dx.doi.org/10.4236/ojrad.2014.41006.

25. Oldfield M., Dini D., Giordano G., Rodriguez y Baena F. Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach, Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16:5, pp. 530—543, doi: 10.1080/10255842.2011.628448.

26. Argatov I., Mishuris G. An analytical solution for a linear viscoelastic layer loaded with a cylindrical punch: evaluation of the rebound indentation test with application for assessing viability of articular cartilage, Mech. Res. Commun., 2011, 38 (2011), pp. 565—568.

27. Argatov I. An analytical solution of the rebound indentation problem for an iotropic linear viscoelastic layer loaded with a spherical punch, Acta Mech., 2012, 223, pp. 1441—1453.

28. Lyubicheva A. Closed-Form Solution of Axisymmetric Contact Problem for a Viscoelastic Base within Cycle of Increasing and Decreasing of Load on the Indenter, Journal of Friction and Wear, 2017, 38(2), pp. 138—143.

29. Liu Z., Yao Z., Li X., Fu Q. Design and experiments of a linear piezoelectric motor driven by a single mode, Review of Scientific Instruments, 2016, vol. 87, 115001, doi: 10.1063/1.4966251.

30. Klimina L., Shalimova E., Dosaev M., Garziera R. Closed dynamical model of a double propeller HAWT, Procedia engineering, 2017, 199, pp. 577—582.

31. Selyutskiy Y. D., Klimina L. A. Effect of nonlinear electromechanical interaction upon wind power generator behavior, AIP Conference Proceedings, 2014, 1637 (1), pp. 982—987.


Review

For citations:


Goryacheva I.G., Dosaev M.Z., Selyutskiy Y.V., Yakovenko A.A., Hsiao C., Huang C., Ju M., Yeh C. Control of Insertion of Indenter into Viscoelastic Tissue using a Piezoelectric Drive. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(5):304-311. (In Russ.) https://doi.org/10.17587/mau.21.304-311

Views: 794


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)