Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Adaptive Approximation of Signals

https://doi.org/10.17587/mau.19.306-311

Abstract

A lot of works devoted to the problems of approximation both continuous and discrete signals. But, in spite of this, important practical problems arise, especially in the field of Informatics and applied mathematics, which require development and testing of new approaches of experimental data approximation. First of all it is connected with the fact that data processing is conducted in the majority in real time. Besides, strict conditions are laid down on the developed algorithms: they must be constructive in programming for optimal performance and real-time problem solving. Approaches to the approximation of the continuous processes are proposed, but on their basis it is easy to derive discrete counterparts. As a rule, in applied tasks signals into discrete moments are measured. Thats why differencing schemes can prove to be more effective for use. When using the proposed algorithms the questions of analysis of convergence of the following iterative procedures arise. It can be done on the basis of Lyapunov methods and special criteria of stability. Adaptive signals approximation models in structural-parametric classes of functions are considered. Approximation is made by using an iterative procedure in the form of an ordinary differential equations system. In order to confirm the effectiveness of the proposed approach, software for simulated examples and real problems testing was developed. Conditions for the convergence of the iterative scheme for approximating signals, which are based on Lyapunov stability theory, are given. Suggested methods can be effectively applied for the detection of chemical and biological analysis of the spectral data. To demonstrate the effectiveness model examples for the approximation of the continuous signals are given.

About the Authors

F. G. Garashchenko
National Taras Shevchenko University
Russian Federation


V. T. Matvienko
National Taras Shevchenko University
Russian Federation


References

1. Ахиезер Н. И. Лекции по теории аппроксимации. М.: Наука, 1965. 407 с.

2. Евтушенко Ю. Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982. 432 с.

3. Бублик Б. Н., Гаращенко Ф. Г., Кириченко Н. Ф. Структурно-параметрическая оптимизация и устойчивость динамики пучков. К.: Наукова думка, 1985. 304 с.

4. Мартынюк Д. И. Лекции по качественной теории разностных уравнений. К.: Наукова думка, 1972. 246 с.

5. Гаращенко О. Ф., Кириченко Н. Ф. Об одном методе последовательного построения матриц ортогональных преобразований // Проблемы управления и информатики. 2005. № 1. С. 75-87.

6. Гаращенко Ф. Г., Дегтяр О. С., Швець О. Ф. Адаптивные модели аппроксимации сигналов в структурно-параметрических классах функций // Проблемы управления и информатики. 2011. № 2. С. 69-77.

7. Кириченко Н. Ф., Лепеха Н. П. Применение псевдообратных и проекционных матриц к исследованию задач управления, наблюдения и идентификации // Кибернетика и системный анализ. 2002. № 4. С. 107-124.

8. Кириченко Н. Ф., Лепеха Н. П. Возмущение псевдообратных и проекционных матриц и их применение к идентификации линейных и не линейных зависимостей // Проблемы управления и информатики. 2001. № 1. С. 6-22.


Review

For citations:


Garashchenko F.G., Matvienko V.T. Adaptive Approximation of Signals. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(5):306-311. (In Russ.) https://doi.org/10.17587/mau.19.306-311

Views: 421


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)