Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Evaluation of the Properties of Fuzzy Control Systems in the Stage of Formation of the Knowledge Base

https://doi.org/10.17587/mau.19.291-297

Abstract

The paper is devoted to the study of the influence of the procedure of formation of the knowledge base on the characteristics of the fuzzy logic controller (FLC). The source of information in the construction of fuzzy controllers is expert knowledge. Constructing of membership functions of terms of the input and output linguistic variables and the fuzzy matching between the antecedent and consequent spaces is formalizes this knowledge. This entails loss of information, because there is no unique translation from a qualitative entity to a quantitative representation except for some special cases. Therefore, as a rule, it is necessary to correct the knowledge base and parameters of algorithm of fuzzy inference in order to achieve the required quality of the system. The main problem of the organization of the correction procedure lies in the complexity of purposeful changes of certain parameters of the algorithm, since the relationship between the settings of FLC and its dynamic properties are still not well studied. Thus, the task of complex research of FLC, allowing an analysis and synthesis system from the standpoint of the classical theory of automatic control, is relevant. The algorithm of the fuzzy inference consists of several stages such as formation of a knowledge base, fuzzification, aggregation, activation, accumulation and defuzzification. Creation of a knowledge base is perhaps the most critical step because it requires the involvement of experts and formalizing their knowledge to further computer processing. The formation of knowledge base in the algorithms of fuzzy inference based on relational models is discussed in the paper. We suggest considering three typical models of decision-making in compiling the rule base is "strong", "uncertain" and "balanced" - and estimate their influence on the control surface of FLC and the transient response of the fuzzy control system. We concluded that, from the point of view of influence on the dynamics of fuzzy control systems, specific analytical description of the membership functions is not essential; however, their degree of tension-compression has a significant effect on both the control surface, and system behavior. The conducted research allows goal-seeking tuning of FLC, providing required quality metrics of control system.

About the Authors

D. N. Anisimov
National Research University "Moscow Power Engineering Institute"
Russian Federation


E. V. Fyodorova
National Research University "Moscow Power Engineering Institute"
Russian Federation


S. M. Gryaznov
National Research University "Moscow Power Engineering Institute"
Russian Federation


References

1. Jager R. Fuzzy logic in control // Ill. Thesis Technische Universiteit Delft, 1995.

2. Мелихов А. Н., Бернштейн Л. С., Коровин С. Я. Ситуационные советующие системы с нечеткой логикой. М.: Наука, 1990.

3. Mamdani E. H., Assilian S. An experiment in linguistic synthesis with fuzzy logic controller // Int. J. Man-Machine Studies. 1975. Vol. 7, N. 1. P. 1-13.

4. Larsen P. M. Industrial applications of fuzzy logic control // Int. J. Man-Machine Studies. 1980. Vol. 12, N. 1. P. 3-10.

5. Tsukamoto Y. An approach to fuzzy reasoning method // Gupta M. M., Ragade R. K. and Yager R. R. (Eds.) Advances in Fuzzy Sets Theory and Applications. North-Holland, Amsterdam, 1979. Р. 137-149.

6. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. on Systems, Man and Cybernetics. 1985. Vol. 15, N. 1. Р. 116-132.

7. Pedrycz W. Fuzzy Control and Fuzzy Systems. New York: John Wiley and Sons, 1993.

8. Анисимов Д. Н., Май Тхе Ань. Динамические свойства нечетких систем управления, построенных на основе реляционных моделей // Мехатроника, автоматизация, управление. 2017. Т. 18. № 5. С. 298-307.

9. Борисов В. В., Круглов В. В., Федулов А. С. Нечеткие модели и сети. М.: Горячая линия-Телеком, 2012.

10. Анисимов Д. Н., Новиков В. Н., Сафина Э. А., Ситников К. Ю. Исследование влияния выбора логического базиса на характеристики нечеткого регулятора // Мехатроника, автоматизация, управление. 2013. № 8 (149). С. 12-17.

11. Макаров И. М., Лохин В. М., Манько С. В., Романов М. П. Искусственный интеллект и интеллектуальные системы управления. М.: Наука, 2006.

12. Колосов О. С., Анисимов Д. Н., Хрипков Д. В. Исследование многоуровневых диагностических систем с использованием стохастической модели // Мехатроника, автоматизация, управление. 2015. Т. 16, № 4. С. 254-261.

13. Пегат А. Нечеткое моделирование и управление. М.: БИНОМ. Лаборатория знаний, 2009.

14. Анисимов Д. Н., Дроздова Е. Д., Новиков В. Н. Исследование свойств нечеткого аппроксимирующего ПД регулятора // Мехатроника, автоматизация, управление. 2014. № 9. С. 6-12.

15. Анисимов Д. Н. Нечеткие алгоритмы управления: Уч. пособие. М.: Издательство МЭИ, 2004.

16. Анисимов Д. Н. Идентификация линейных динамических объектов методом экспоненциальной модуляции // Вестник МЭИ. 1994. № 2. С. 68-72.


Review

For citations:


Anisimov D.N., Fyodorova E.V., Gryaznov S.M. Evaluation of the Properties of Fuzzy Control Systems in the Stage of Formation of the Knowledge Base. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(5):291-297. (In Russ.) https://doi.org/10.17587/mau.19.291-297

Views: 461


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)