Analytical Solving the Optimal Control Problem of Spacecraft’s Slew Maneuver with Minimal Energy of Rotation
https://doi.org/10.17587/mau.21.174-183
Abstract
About the Author
M. V. LevskiiRussian Federation
Ph.D., Leading Researcher
Korolev, The Moscow region
References
1. Branets V. N., Shmyglevskii I. P. The use of quaternions in problems of orientation of a rigid body, Moscow, Nauka, 1973, 320 p. (in Russian).
2. Liu S., Singh T. Fuel/time optimal control of spacecraft maneuvers, Guidance, 1996, vol. 20, no. 2, pp. 394—397.
3. Scrivener S., Thompson R. Survey of time-optimal attitude maneuvers, Guidance, Control and Dynamics, 1994, vol. 17, no. 2, pp. 225—233.
4. Shen H., Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls, AIAA Guidance, Сontrol and Вynamics, 1999, vol. 22, no. 5, pp. 682—694.
5. Branets V. N., Chertok M. B., Kaznacheev Yu. V. Optimal rotation of a rigid body with one symmetry axis, Kosmicheskie Issledovaniya. 1984, vol. 22, iss. 3, pp. 352—360.
6. Molodenkov A. V., Sapunkov Ya. G. A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions, Izvesttiya RAN. Teoriya i Sistemy Upravleniya, 2007, no. 2, pp. 152—165 (in Russian).
7. Levskii M. V. About method for solving the optimal control problems of spacecraft spatial orientation, Problems of nonlinear analysis in engineering systems, 2015, vol. 21, no. 2, pp. 61—75.
8. Levskii M. V. The use of universal variables in problems of optimal control concerning spacecrafts orientation, Меkhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 1, pp. 53—59 (in Russian).
9. Levskii M. V. Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft, Izvestiya RAN. Teoriya i Sistemy Upravleniya, 2008, no. 6, pp. 144—157 (in Russian).
10. Levskii M. V. Optimal spacecraft terminal attitude control synthesis by the quaternion method, Mechanics of Solids, 2009, vol. 44, no. 2, pp. 169—183.
11. Levskii M. V. On optimal spacecraft damping, Izvestiya RAN. Teoriya i Sistemy Upravleniya, 2011. no. 1, pp. 147—161 (in Russian).
12. Sarychev V. A., Belyaev M. Yu., Zykov S. G., Sazonov V. V., Teslenko V. P. Mathematical models of processes for supporting orientation of the Mir orbital station with the use of gyrodynes, Preprint IPM im. M. V. Keldysha AN SSSR, 1989, no. 10 (in Russian).
13. Kovtun V. S., Mitrikas V. V., Platonov V. N., Revnivykh S. G., Sukhanov N. A. support for conducting experiments with attitude control of space astrophysical module Gamma, Izv. AN SSSR. Tekhnicheskaya Kibernetika, 1990, no. 3, pp. 144—157 (in Russian).
14. Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. mathematical theory of optimal processes, Moscow, Nauka, 1983 (in Russian); Gordon and Breach, New York, 1986, 361 p. (in Russian).
15. Young L. G. Lectures on the calculus of variations and optimal control theory. W. B. Saunders Company. Philadelphia, London, Toronto, 1969, 327 p.
16. Levskii M. V. A system of controlling a spatial turn of spacecraft. The patent for the invention of the Russian Federation no. 2006431, Byulleten’ "Izobreteniya. Zayavki i Patenty", 1994, no. 2, pp. 49—50 (in Russian).
Review
For citations:
Levskii M.V. Analytical Solving the Optimal Control Problem of Spacecraft’s Slew Maneuver with Minimal Energy of Rotation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(3):174-183. (In Russ.) https://doi.org/10.17587/mau.21.174-183