The Method of the Computer Vision System Coordinate Transformation for an Industrial Robot for a Laser Welding Operation
https://doi.org/10.17587/mau.21.166-173
Abstract
About the Authors
A. Y. PolivanovRussian Federation
Ph.D.
Moscow, 127055
Y. V. Ivanov
Russian Federation
Moscow, 127055
D. V. Kholin
Russian Federation
Moscow, 127055
References
1. Poduraev Y. V., Ilukhin Y. V., Yakovlev S. F., Vozhinskiy A. V. The main aspects of the creation of domestic robotic laser welding systems with an adaptive control system, Mekhatronika, Avtomatizatsiya, Upravlenie, 2011, vol. 11. pp. 18—22.
2. Zarubin S. G., Nicholaev P. M., Ilukhin Y. V., Poduraev Y. V., Polivanov A. Y. Robotic technological complex for precision plasma cutting, plasma hardening of the surface and applying protective coatings, Engineering Technology, 2013, vol . 9, pp. 48—53 (in Russian).
3. Poduraev Y. V., Ilukhin Y. V., Yakovlev S. F., Vozhinskiy A. V. Prospects for the development of dome stic robotic laser welding systems, Engineering Technology, 2012, vol. 1. pp. 32—35.
4. Poezhaeva E. V., Sergeev A. A., Misurov M. N. Development of the concept of adaptive seam tracking in real time for robotic welding, Young Scientist, 2015, vol. 16, pp. 214—218 (in Russian).
5. Tsai R. Y. A Versatile Camera Calibration Technique for High-Accuracy 3d Machine Vision Metrology Using OffThe-Shelf TV Cameras and Lenses / R. Y. Tsai, IEEE Journal on Robotics and Automation, 1987, vol. 3(4), pp. 323—344.
6. Zhang Z. A flexible new technique for camera calibration, IEEE Trans. on PAMI, 2000, vol. 22(11), pp. 1330—1334.
7. Maybank S. J., Faugeras O. D. A theory of self-calibration of a moving camera, International Journal of Computer Vision, 1992, vol. 8(2), pp. 123—151.
8. Ilukhin Y. V. Implementation of the mechatronic approach in the construction of computer control systems for laser and plasma cutting systems, Mekhatronika, Avtomatizatsiya, Upravlenie, 2005, vol. 10, pp. 25—50 (in Russian).
9. Zarudnev A. S., Ilukhin Y. V. Improving the performance of laser systems based on the prediction of contour error, Mekhatronika, Avtomatizatsiya, Upravlenie, 2010. vol. 9, pp. 52—56 (in Russian).
10. Faig W. Calibration of Close-Range Photogrammetry Systems: Mathematical Formulation, Photogrammetric Eng. and Remote Sensing, 1975, vol. 41, no. 12, pp. 1479—1486.
11. Sturm S., Maybank S. J. On Plane-Based Camera Calibration: A General Algorithm Singularities Applications, Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1999, pp. 432—437.
12. Klevalin V. A., Polivanov A. Y. Digital recognition methods in vision systems of industrial robots, Mekhatronika, Avtomatizatsiya, Upravlenie, 2008, vol. 5, pp. 56 (in Russian).
13. Klevalin V. A., Polivanov A. Y. Vision systems in industrial robotics, Mekhatronika, Avtomatizatsiya, Upravlenie, 2010, vol. 9, pp. 26—36 (in Russian).
14. Polivanov A. Y., Shatunov K. V. Adaptive robot control KUKA KR-16 using a vision system, Electrical Complexes and Control Systems, 2012, vol. 3, pp. 60—64 (in Russian).
15. Klevalin V. A., Polivanov A. Y., Shatunov K. V. Improving the accuracy of vision systems of industrial robots by calibrating the image receiver, Vestnik MGTU STANKIN, 2013, vol. 1(24), pp. 34—38 (in Russian).
Review
For citations:
Polivanov A.Y., Ivanov Y.V., Kholin D.V. The Method of the Computer Vision System Coordinate Transformation for an Industrial Robot for a Laser Welding Operation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(3):166-173. (In Russ.) https://doi.org/10.17587/mau.21.166-173