Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Synthesis of Robust PID Controllers by Double Optimization Method

https://doi.org/10.17587/mau.21.67-73

Abstract

The design of adaptive controllers allows to solve the problem of control of the object with non-stationary parameters. However, if the parameters of the object do not change too much or if only a certain interval of their change is known, it may turn out that an adaptive controller is not required, since the problem can be solved with the help of a robust controller. The robust controller allows to provide an acceptable quality of control even if the parameters of the mathematical model of the object change in some predetermined interval. A method of designing such controllers is known as the method of numerical optimization of the controllers used in the ensemble of systems in which the models of objects are different and the models of controllers are identical. The ensemble uses object models with extreme parameter values. The disadvantages of this method are too many systems that need to be modeled and optimized at the same time if there are several parameters to be changed. In addition, the worst combination of model parameters may not be boundary, but middle, in this case this method is not applicable. This article offers and analyzes an alternative method of designing a robust controller on a numerical example. The essence of this method is the numerical optimization of the regulator for the model with the worst combination of the values of all modifiable parameters. The search for the worst combination of parameters is also carried out using the method of numerical optimization. In this case, a combination of model parameters is found in which the best relation of regulator coefficients gives the worst result of the system. The problem is solved in several optimization cycles with alternating cost functions. The utility of the method is illustrated numerically by an example of a third order dynamic object with a series linked delay element.

About the Authors

V. A. Zhmud
Novosibirsk State Technical University
Russian Federation


A. S. Vostrikov
Novosibirsk State Technical University
Russian Federation


A. Yu. Ivoilov
Novosibirsk State Technical University
Russian Federation
Ivoilov Andrei Yu., PhD-student of Department of Automation


G. V. Sablina
Novosibirsk State Technical University
Russian Federation


References

1. Veselý V. A new method to robust controller design, Proc. of 2016 17th International Carpathian Control Conference (ICCC), Tatranska Lomnica, 2016, pp. 779—781.

2. Oliveira V. A., Tognetti E. S., Siqueira D. Robust controllers enhanced with design and implementation processes, Proc. оf IEEE Transactions on Education, 2011, vol. 49, no. 3, pp. 370—382.

3. Vitecek A., Viteckova M. Robust control of mechanical systems, Proc. of the 2015 16th International Carpathian Control Conference (ICCC), Szilvasvarad, 2015, pp. 575—579.

4. Chesi G. Convex Synthesis of Robust Controllers for Linear Systems with Polytopic Time-Varyi ng Uncertainty, IEEE Transactions on Automatic Control, 2017, vol. 62, no. 1, pp. 337—349.

5. Astudillo A., Bacca B., Rosero E. Optimal and robust controllers design for a smartphone-based quadrotor, Proc. of 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, 2017, pp. 1—6.

6. Vardhana P. H., Kumar B. K., Kumar M. A robust controller for DSTATCOM, In: 2009 International Conference on Power Engineering, Energy and Electrical Drives, Lisbon, 2009, pp. 546—551.

7. Molins C., Garcia-Sanz M. Automatic loop shaping of QFT robust controllers, Proc. of the IEEE 2009 National Aerospace & Electronics Conference (NAECON), Dayton, OH, 2009, pp. 103—110.

8. Ny J. Le, Pappas G. J. Sequential composition of robust controller specifications, 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 2012, pp. 5190—5195.

9. Ebihara Y., Peaucelle D., Arzelier D., Hagivara T. Robust H2 performance Analysis of Yncertain LTI Systems via Polynomially Parameter Dependent Lyapunov functions, Proc. of IFAC Symp. RO-COND’06, 2006.

10. Oliveira R. C. L. F., Peres P. L. D. LMI Conditions for robust stability analysis based on Polynomial Parameter Dependent Lyapunov functions, Systems and Control Letters, 2006, vol. 55, pp. 52—61.

11. Veselý V., Rosinová D. Robust PID-PSD Controller design: BMI approach, Asian Journal of Control, 2012, vol. 15, pp. 469—478.

12. Chesi G. LMI techniques for optimization over polynomials in control: A survey, IEEE Trans. Autom. Control, 2010, vol. 55, no. 11, pp. 2500—2510.

13. Chesi G. Sufficient and necessary LMI conditions for robust stability of rationally time-varying uncertain systems, IEEE Trans. Autom. Control, 2013, vol. 58, no. 6, pp. 1546—1551.

14. Geromel J. C., Colaneri P. Robust stability of time varying polytopic systems, Syst. Control Lett., 2006, vol. 55, no. 1, pp. 81—85.

15. Scheiderer C., Putinar M., Sullivant S. Positivity and sums of squares: A guide to some recent results // in Emerging Applications of Algebraic Geometry New York NY USA: Springer— Verlag, 2009, vol. 149, pp. 271—324.

16. Cedro L. Identification of an electrically driven manipulator using the differential filters — input error method // Acta Mechanica et Automatica, 2012, vol. 6, no. 2, pp. 23—27.

17. Lewis F. L., Dawson D. M., Abdallah Ch. T. Robot Mani pulator Control in Theory and Practice, New York, Marcel Dekker, 2006.

18. Liu H., Wang X. Quaternion-based robust attitude control for quadrotors, 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 920—925.

19. Lopez R., Gonzalez-Hernandez I., Salazar S., Rodriguez A. E., Ordaz J. J., Osorio. Disturbance rejection for a Quadrotor aircraft through a robust control, In Proc. of 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 409—415.

20. Jung J., Jung Y., You D., Shim D. H. A flight control system design for highly unstable unmanned combat aerial vehicles, In Proc. of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 1117—112 5.

21. Kohno S., Uchiyama K. Design of robust controller of fixed-wing UAV for transition flight, In Proc. of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 1111—1116.

22. Shang B., Liu J., Zhao T., Chen Y. Fractional order robust visual serving control of a quadrotor UAV with larger sampling period, In Proc. of 2016 International Conference on Unmanned Aircraft Systems (ICUAS), 2016, vol. 1, no. 209, pp. 1228—1234.

23. Salazar S., Gonzalez-Hernandez I., Lopez R., Lozano R. Simulation and robust trajectory tracking for a Quadrotor UAV, In Proc. of 2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 1167—1174.

24. Pearce C., Guckenberg M., Holden B., Leach A., Hughes R., Xie C., Hassett M., Adderley A., Barnes L. E., Sherriff M., Lewin G. C. Designing a spatially aware automated quadcopter using an Android control system, In Proc. of 2014 Systems and Information Engineering Design Symposium (SIEDS), 2014, pp. 23—28.

25. Bjälemark A., Bergkvist H. Quadcopter control using Android based sensing, Advances in Electrical and Computer Engineering, 2014, pp. 15—21.

26. Loianno G., Cross G., Qu C., Mulgaonkar Hesch J. A., Kumar V. Flying Smartphones: Automated flight enabled by consumer electronics, IEEE Robotics Automation Magazine, 2015, vol. 22, pp. 24—32.

27. Aldrovandi L., Hayajneh M., Melega M., Furci M., Naldi R., Marconi L. A smartphone based quadrotor: Attitude and position estimation, In Proc. of 2015 International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 1251—1259.

28. Bryant P., Gradwell G., Claveau D. Autonomous UAS controlled by onboard smartphone, In Proc. of International Conference on Unmanned Aircraft Systems (ICUAS), 2015, pp. 451—454.

29. Zavorin A. N., Novickij S. P., Zhmud V. A., Yadryshnikov O. D., Poller B. V. The synthesis of the robust controller by double iterative parallel numerical optimization method, Nauchnyj vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, no. 2, vol. 47, pp. 196—200 (in Russian).

30. Zavorin A. N., Polishchuk A. V., Yadryshnikov O. D., Zhmud V. A. The development of robust regulators by a method of numerical optimization of their parameters for an ensemble of objects, Sbornik nauchnyh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, no. 1, vol. 67, pp. 15—24 (in Russian).

31. Zhmud V. A., Zavorin A. N., Polishchuk A. V., Yadryshnikov O. D. The development of robust regulators for control of thermal processes of a steam heater by a method of numerical optimization of their parameters for an ensemble of system mo dels, Vestnik komp’yuternyh i informacionnyh tekhnologij, 2013, no. 2, vol. 104, pp. 47—55 (in Russian).

32. Zhmud V. A., Semibalamut V. M., Dimitrov L. V. The robust development of the resource saving dual channel regulator for an object with a single input, Avtomatika i Programmnaya Inzheneriya, 2015, no. 1, vol. 11, pp. 22—28 (in Russian).

33. Zemtsov N. S., Hlava J., Frantsuzova G. A. Using the robust PID controller to manage the population of thermostatically controlled loads, Proc. of Int. conf. on industrial engineering, applications and manufacturing (ICIEAM): proc., Chelyabinsk, IEEE, 2017, 4 p.

34. Zhmud V., Prokhorenko E., Liapidevskiy A. В. The design of the feedback systems by means of the modeling and optimization in the program VisSim 5.0/6, Proceedings of the IASTED International Conference on Modelling, Identification and Control 30th IASTED Conference on Modelling, Identification, and Control, AsiaMIC 2010, Phuket, 2010, pp. 27—32.

35. Zhmud V. A., Zavorin A. N. Metodi di ottimizzazione del controllo numerico su una modelli troncati, Italian Science Review, 2014, no. 4 (13), pp. 686—689.

36. Zhmud V., Yadrishnikov O., Poloshchuk A., Zavorin A. Modern key technologies in automatics: structures and numerical optimization of regulators, Proceedings — 2012 7th International Forum on Technology (IFOST 2012), proc., Tomsk, 18—21 Sept. 2012, IEEE, 2012, Art. 6357804 (5 p.).

37. Zhmud V. A., Reva I. L., Dimitrov L. V. Design of robust systems by means of the numerical optimization with harmonic changing of the model parameters, Journal of Physics: Conference Series, 2017, vol. 803, Art. 012185 (6 p.) (International conference on information technologies in business and industry, Tomsk, 21—26 Sept. 2016).


Review

For citations:


Zhmud V.A., Vostrikov A.S., Ivoilov A.Yu., Sablina G.V. Synthesis of Robust PID Controllers by Double Optimization Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2020;21(2):67-74. (In Russ.) https://doi.org/10.17587/mau.21.67-73

Views: 877


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)