Tilt-Rotor Quadrotor Control System Design and Mobile Object Tracking
https://doi.org/10.17587/mau.20.629-639
Abstract
About the Authors
M. ShavinRussian Federation
D. Pritykin
Russian Federation
References
1. Otero A. S., Chen A., Miller D. W., Hilstad M. SPHERES: Development of an ISS Laboratory for formation flight and docking research, Proceedings, IEEE Aerospace Conference, Big Sky, MT, USA, 2002, pp. 1—1.
2. Zulu A., John S. A Review of Control Algorithms for Autonomous Quadrotors. Open. Journal of Applied Sciences, 2014, 4, pp. 547—556.
3. Sholc G., Trommer G. F. Gyroscopy and Navigation, 2015, no. 4 (91), pp. 131—146 (in Russian).
4. Sridhar S., Kumar R., Cohen K., Kumar M. ASME 2018 Dynamic Systems and Control, 2018.
5. Morozov Y. V. Automation and Remote Control, 2018, no. 3, pp. 92—110 (in Russian).
6. Ryll M., Bülthoff H. H., Giordano P. R. A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation, IEEE Transactions on Control Systems Technology, 2015, 23(2), pp. 540—556.
7. Falconi R., Melchiorri C. Dynamic Model and Control of an OverActuated Quadrotor UAV, in Proc. of the 10th IFAC Symposium on Robotic Control, 2012, pp. 192—197.
8. Segui-Gasco P., Al-Rihani Y., Shin H. S., Savvaris A. A Novel Actuation Concept for a Multi Rotor UAV, Journal of Intelligent & Robotic Systems, 2014, vol. 74, iss. 1—2, pp. 173—191.
9. Oosedo A. et al. Flight control systems of a quad tilt rotor unmanned aerial vehicle for a large attitude change, Robotics and Automation (ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp. 2326—2331.
10. Mellinger D., Kumar V. Minimum snap trajectory generation and control for quadrotors, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘11), Shanghai, China, IEEE, May 2011, pp. 2520—2525.
11. Sridhar S., Kumar R., Radmanesh M., Kumar M. NonLinear Sliding Mode Control of a Tilting-Rotor Quadcopter, ASME 2017 Dynamic Systems and Control Conference.
12. Kumar R., Nemati A., Kumar M., Sharma R., Cohen K., Cazaurang F. Tilting-Rotor Quadcopter for Aggressive Flight Maneuvers Using Differential Flatness Based Flight Controller, ASME 2017 Dynamic Systems and Control Conference.
13. Shavin M. Y. Engineering Journal: Science and Innovation, 2018, 76 (4) (in Russian).
14. Xsens North America Inc. Xsens MTi-7 module official page // xsens.com: Xsens official web-page. 2000—2018, available at: https://www.xsens.com/products/mti-7/
15. Shavin M., Pritykin D. Proceedings of the Problems Of Mechanics And Control conference (2018, Makhachkala), pp. 337—339 (in Russian).
16. Julier S. J., Uhlmann J. K., Durrant-Whyte H. F. A new approach for filtering nonlinear systems, In Proceedings of the American Control Conference, 1995, pp. 1628—1632.
17. Julier S. J., Uhlmann J. K. Unscented filtering and nonlinear estimation, Proc. of IEEE, 2004, no. 3, pp. 401—422.
18. Kulikova M. V., Kulikov G. Y. Computational Technologies, 2016, vol. 21, no. 4, pp. 64—98 (in Russian).
19. Vergbickiy M. Fundamentals of numerical methods, Electronic resources in HSE, Moscow, 2009, 840 p. (in Russian).
20. Feng Yanming, Jinling Wang. GPS RTK performance characteristics and analysis, Journal of Global Positioning Systems, 2008, 1, pp. 1—8.
21. Andreev K. V., Rubinovich E. Ya. Automation and Remote Control, 2016, no. 1, pp. 134—162 (in Russian).
22. Miller B. M., Stepanyan K. V., Popov A. K., Miller A. B. Automation and Remote Control, 2017, no. 12, pp. 141—154 (in Russian).
Review
For citations:
Shavin M., Pritykin D. Tilt-Rotor Quadrotor Control System Design and Mobile Object Tracking. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(10):629-639. (In Russ.) https://doi.org/10.17587/mau.20.629-639