Synthesis Robust Hinfinity-Regulator of the Low Order by using of Linear Matrix Inequalities and Projective Lemmas
Abstract
About the Author
V. I. KrasnoshchechenkoRussian Federation
References
1. Chilali M., Gahinet P. Hinf Design with Pole Placement Constraints: An LMI Approach // IEEE Trans. Automat. Contr. 1996. Vol. 41. P. 358-367.
2. Gahinet P., Apkarian P. A Linear Matrix Inequality Approach to Hinf Control // Intern. J. Robust & Nonlinear Control. 1994. Vol. 4, N. 4. P. 421-448.
3. Iwasaki T., Skelton R. E. All Controllers for General Hinf Control Problem: DLMI Existence and State Space Formulas // Automatica. 1994. V. 30, N. 8. P. 1307-1317.
4. Баландин Д. В., Коган М. М. Применение линейных матричных неравенств в синтезе законов управления. Н. Новгород: Изд-во Нижегородского госуниверситета, 2010. 93 с.
5. Баландин Д. В., Коган М. М. Линейные матричные неравенства в задаче робастного ^„-управления по выходу // ДАН. 2004. Т. 396. № 6. С. 759-761.
6. Gu D. W., Petkov P. Hr., Konstantinov M. M. Robust Control Design with Matlab. London: Springer, 2005. 389 p.
7. Поляк Б. Т., Щербаков П. С. Робастная устойчивость и управление. М.: Наука, 2002. 303 с.
8. Grigoriadis K. M., Skelton R. E. Low-order Control Design for LMI Problems Using Alternating Projection Methods // Automatica. 1996. V. 32, N. 8. P. 1117-1125.
9. Sun X., Mao J. Low-order Controller Design Based on LMI Using Projection Method // Proceedings 14th World IFAC Congress. 1999. Paper N. G-2e-12-5.
10. Gu D. W., Choi B. W., Postlethwaite I. Low-Order Stabilizing Controllers // IEEE Trans. AC. 1994. V. 38, N. 11. P. 1713-1717.
11. Brasch F. M., Pearson J. B. Pole Placement Using Dynamic Compensator // IEEE Trans. AC. 1970. V. 15, N. 1. P. 34-43.
12. Boyd S., Ghaoui E., Feron E., Balakrishnan V. Linear Matrix in System and Control Theory. Philadelphia: SIAM, 1994. 193 p.
13. Hermann G., Turner M. C., Postlethwaite I. Linear Matrix Inequalities in Control. In: Mathematical Methods for Robust and Nonlinear Control / Eds M. C. Turner et al. Berlin: Springer, 2007. P. 123-142.
14. Finsler P. Uber das Vorkommen definiter und semi-definiter Formen in Scharen quadratischer Formen // Comentari mathematici Helvetici. 1937. V. 9. P. 192-199.
15. Laub A. J. Matrix Analysis for Scientists and Engineers. Philadelphia: SIAM, 2005. 157 p.
16. Zhang F. Matrix Theory. Basic Results and Techniques. NY: Springer, 2011. 399 p.
17. Higham N. J. Computing the Nearest Symmetric Positive Semidefinite Matrix // Lin. Algebra Aspplics. 1988. V. 103. P. 103-118.
18. Franclin G. F., Powell J. D., Emami-Naeini A. Feedback Control of Dynamic Systems. Fourth Edition. New Jersey: Prentice-Hall, 2002. 887 p.
Review
For citations:
Krasnoshchechenko V.I. Synthesis Robust Hinfinity-Regulator of the Low Order by using of Linear Matrix Inequalities and Projective Lemmas. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(4):219-231. (In Russ.)