Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Identification of Hysteresis Models for Aerodynamic Coefficients at Overcritical Angles of Attack

Abstract

At present, maneuverable thrust vectored aircraft are capable of performing a controlled flight beyond normal flight envelope, namely, for attack angles significantly exceeding the critical value. It is well known that in this case the aerodynamic processes fundamentally change in comparison with flight at small and average angles of attack. It is also known that the errors in the methods of computational aerodynamics and the wind-tunnel data for overcritical range increase significantly due to the essentially nonlinear and unsteady nature of the flow. Therefore, the problem of validation and estimation of aerodynamic coefficients based on the results of flight tests by methods of system identification is vital. It is obvious that agreement of aircraft dynamics models with the flight data is necessary for the development, modernization, testing, creation of simulators, investigation of flight incidents, i.e. for all the main stages of the aircraft life cycle. One of the most important poststall effects is the emergence of hysteresis in the dependences of the aerodynamic coefficients on the angle of attack. This phenomenon is due to the fact that the flow separation with increasing angle of attack and flow restoration with the subsequent decrease of the angle of attack occur asymmetrically. This effect takes place even for very small values of the derivative of the angle of attack with respect to time, and as a result it is called stationary hysteresis. This article deals with the problems concerning identification of the mathematical model for aircraft motion at the overcritical angles of attack by processing flight test data. Algorithms for obtaining estimates for coefficients of the lift force, the drag force and the pitching moment from the flight test data are proposed. The mathematical model of the hysteresis of the lift coefficient is considered, and its parameters are identified. Furthermore, article presents expressions allowing the calculation of the hysteresis of the drag coefficient and the pitch moment through the hysteresis of the lifting force and the coefficients analogous to the lift-drag ratio and static stability coefficients known from aerodynamics and flight dynamics.

About the Authors

O. N. Korsun
State Research Institute of aviation systems
Russian Federation


A. V. Stulovsky
State Research Institute of aviation systems
Russian Federation


A. V. Kanyshev
State Flight Test Center named after V. P. Chkalov
Russian Federation


References

1. Васильченко К. К., Леонов В. А., Пашковский И. М., Поплавский Б. К. Летные испытания самолетов. М.: Машиностроение, 1996. 745 с.

2. Аэродинамика, устойчивость и управляемость сверхзвуковых самолетов / Под ред. Г. С. Бюшгенса. М.: Наука. Физмалит, 1998. 816 с.

3. Белоцерковский С. М., Качанов Б. О., Кулифеев Ю. Б., Морозов В. И. Создание и применение математических моделей самолетов. М.: Наука, 1984. 143 с.

4. Klein V., Morelli E. A. Aircraft system identification: Theory and Practice. USA, Reston: AIAA, 2006. 499 p.

5. Korsun O. N., Poplavsky B. K. Approaches for flight tests aircraft parameter identification // 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014. St. Petersburg. Russian Federation. 2014. Paper № 2014-0210.

6. Корсун О. Н., Николаев С. В. Идентификация аэродинамических коэффициентов самолетов в эксплуатационном диапазоне углов атаки // Вестник компьютерных и информационных технологий. 2016. № 9. С. 3-10.

7. Lawrence E. Hale, Mayuresh Patil, and Christopher J. Roy. Aerodynamic Parameter Identification and Uncertainty Quantification for Small Unmanned Aircraft // Journal of Guidance, Control, and Dynamics. 2017. Vol. 40, No. 3. P. 680-691.

8. Игнатьев Д. И., Храбров А. Н. Использование искусственных нейронных сетей для моделирования динамических эффектов аэродинамических коэффициентов трансзвукового самолета // Ученые записки ЦАГИ. 2011. Т. XLII, № 6. С. 84-91.

9. Дорофеев Е. А., Игнатьев Д. И., Храбров А. Н. Применение искусственных нейронных сетей для моделирования нестационарных аэродинамических характеристик // Труды МФТИ. 2011. Т. 3, № 2. С. 15-25.

10. Grishin I. I., Ignatyev D. I., Khrabrov A. N., Kolinko K. A., Vinogradov Yu. A., Zhuk A. N. Experimental investigations and mathematical simulation of unsteady aerodynamic coefficients of Transonic Cruiser at small velocities in the wide range of attack angles // International Online Journal Visualization of Mechanical Processes. 2011. Vol. 1, Iss. 2.

11. Yongkyu Song, Byungheum Song, Seanor B. et la On-line aircraft parameter identification using Fourier transform regression with an application to F/A-18 HARV flight data // KSME International Journal. 2002. Vol. 16, N. 3. P. 327-337.

12. Ericsson L. E. Critical issues in high-alpha vehicle dynamics. AIAA: Report No. AIAA-91-3221. 1991.

13. Luchtenburg D. M., Rowley C. M., Lohry M. W., Martinelli L., Stengel R. F. Unsteady high-angle-of-attack aerodynamic models of a generic jet transport // Journal of Aircraft. 2015. Vol. 52, N. 3. P. 890-895.

14. Корсун О. Н., Николаев С. В., Поплавский Б. К. Алгоритмы проверки правильности полетных данных и оценивания нелинейностей при идентификации аэродинамических коэффициентов самолетов // Мехатроника, автоматизация, управление. 2017. Т. 18, № 4. C. 270-278.

15. Корсун О. Н., Стуловский А. В., Канышев А. В. Анализ движения самолетов на закритических углах атаки: коррекция погрешностей бортовых измерений и моделирование отклоняемого вектора тяги // Мехатроника, автоматизация, управление. 2017. Т. 18, № 10. С. 705-711.

16. Goman M. G., Khrabrov A. N. State-Space Representation of Aerodynamic Characteristics of an Aircraft at High Angles of Attack, Journal of Aircraft. 1994. Vol. 31, N. 5. P. 1109-1115.

17. Jategaonkar R. V. Flight vehicle system identification: A time domain methodology. Reston, USA: AIAA, 2006. 410 p.

18. Овчаренко В. Н. Идентификация аэродинамических характеристик воздушных судов по полетным данным. М.: Изд-во МАИ, 2017. 182 с.

19. Завьялов Ю. С., Квасов Б. И., Мирошниченко В. Л. Методы сплайн-функций. М.: Наука, 1980. 352 с.


Review

For citations:


Korsun O.N., Stulovsky A.V., Kanyshev A.V. Identification of Hysteresis Models for Aerodynamic Coefficients at Overcritical Angles of Attack. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(3):201-208. (In Russ.)

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)