Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Identification of Linear Time-Varying Parameters of Nonstationary Systems

https://doi.org/10.17587/mau.20.259-265

Abstract

The paper considers the identification algorithm for unknown parameters of linear non-stationary control objects. It is assumed that only the object output variable and the control signal are measured (but not their derivatives or state variables) and unknown parameters are linear functions or their derivatives are piecewise constant signals. The derivatives of non-stationary parameters are supposed to be unknown constant numbers on some time interval. This assumption for unknown parameters is not mathematical abstraction because in most electromechanical systems parameters are changing during the operation. For example, the resistance of the rotor is linearly changing, because the resistance of the rotor depends on the temperature changes of the electric motor in operation mode. This paper proposes an iterative algorithm for parameterization of the linear non-stationary control object using stable LTI filters. The algorithm leads to a linear regression model, which includes time-varying and constant (at a certain time interval) unknown parameters. For this model, the dynamic regressor extension and mixing (DREM) procedure is applied. If the persistent excitation condition holds, then, in the case the derivative of each parameter is constant on the whole time interval, DREM provides the convergence of the estimates of configurable parameters to their true values. In the case of a finite time interval, the estimates convergence in a certain region. Unlike well-known gradient approaches, using the method of dynamic regressor extension and mixing allows to improve the convergence speed and accuracy of the estimates to their true values by increasing the coefficients of the algorithm. Additionally, the method of dynamic regressor extension and mixing ensures the monotony of the processes, and this can be useful for many technical problems.

About the Authors

V. T. Le
ITMO University
Russian Federation
St. Petersburg, 197101


M. M. Korotina
ITMO University
Russian Federation
St. Petersburg, 197101


A. A. Bobtsov
ITMO University
Russian Federation

Corresponding author: Bobtsov Aleksei A., D. Sc., Director, Head the Chair

St. Petersburg, 197101



S. V. Aranovskiy
ITMO University
Russian Federation
St. Petersburg, 197101


Q. D. Vo
ITMO University
Russian Federation
St. Petersburg, 197101


References

1. Bobtsov A. A., Nagovitsina A. G. Adaptivnoe upravlenie po vyhodu linejnymi nestacionarnymi ob’ektami (Adaptive control of linear nonstationary objects output), Avtomatika i Telemehanika, 2006, no. 12, pp. 163—174 (in Russian).

2. Bobtsov A. A., Grigoryev V. V., Nagovitsina A. G. Algoritm adaptivnogo upravlenija nestacionarnym ob’ektom v uslovijah vozmushhenija i zapazdyvanija (Adaptive control algorithm by nonstationary object in terms of disturbance and delay time), Mekhatronika, Avtomatizatsiya, Upravleniye, 2007, no. 1, pp. 8—14 (in Russian).

3. Cykunov A. M. Robastnoe upravlenie nestacionarnymi ob’ektami (Robust control of nonstationary objects), Avtomatika i Telemehanika, 1996, no. 2, pp. 117—125 (in Russian).

4. Bobtsov A. A., Ljamin A. V., Sergeev K. A. Sintez zakona adaptivnogo upravlenija dlja stabilizacii ne tochno zadannyh nestacionarnyh ob’ektov (Synthesis of the law of adaptive control for stabilization of not exactly specified non-stationary objects), Izv. vuzov. Priborostroenie, 2001, no. 3, pp. 3—7 (in Russian).

5. Nikiforov V. O. Robastnaja sledjashhaja sistema (Robust tracking system), Izv. vuzov. Priborostroenie, 1998, no. 7, pp. 13—18 (in Russian).

6. Andreev Ju. N. Upravlenie konechnomernymi linejnymi sistemami (Control of finite-dimensional linear systems), Moscow, Nauka, 1976, 424 p. (in Russian).

7. Barabanov N. E. O stabilizacii linejnyh nestacionarnyh sistem s neopredelennost’ju v kojefficientah (On stabilization of linear nonstationary systems with uncertainty in coefficients), Avtomatika i Telemehanika, 1990, no. 10, pp. 30—37 (in Russian).

8. Tsakalis K. S., Ioannou P. A. Adaptive control of linear time-varying plants, Automatica, 1987, vol. 23, no. 4, p. 459—468.

9. Tsakalis K. S., Ioannou P. A. Linear time varying systems: control and adaptation, Englewood Cliffs, NJ, Prentice-Hall, 1993.

10. Zhang Y., Fidan B., Ioannou P. A. Backstepping control of linear time-varying systems with known and unknown parameters, IEEE Trans. Automat. Contr, 2003, vol. 48, no. 11, p. 1908—1925.

11. Pervozvanskij A. A. Kurs teorii avtomaticheskogo upravlenija (The course of the theory of automatic control), Moscow, Nauka, 1986, 615 p. (in Russian).

12. Jurkevich V. D. Sintez nelinejnyh nestacionarnyh sistem upravlenija s raznotempovymi processami (Synthesis of nonlinear nonstationary control systems with multi-tempo processes), SPb, Nauka, 2000, 288 p. (in Russian).

13. Le V. T., Bobtsov A. A., Pyrkin A. A. Novyj algoritm identifikacii nestacionarnyh parametrov dlja linejnoj regressionnoj modeli (New algorithm of variable parameters identification for linear regression model), Nauchno-tehnicheskij vestnik informacionnyh tehnologij, mehaniki i optiki, 2017, vol. 17, no. 5, pp. 952—955 (in Russian).

14. Van C., Le V. T., Bobtsov A. A., Pyrkin A. A., Kolyubin S. A. Identifikacija nestacionarnyh parametrov linejnyh regressionnyh modelej(Identification of nonstationary parameters of linear regression models), Avtomatika i Telemehanika, 2018, no. 12, v pechati (in Russian).

15. Ioannou P. A., Sun J. Robust adaptive control, California, PTR Prentice-Hall, 1996.

16. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing, IEEE Trans. Automat. Control, 2016, vol. 62, no. 7, pp. 3546—3550.

17. Miroshnik I. V., Nikiforov V. O., Fradkov A. L. Nelinejnoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and adaptive control of complex dynamic systems), SPb, Nauka, 2000, 549 p. (in Russian).

18. Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness, Courier Dover Publications, 2011, 400 p.

19. Pyrkin A. A., Bobtsov A. A., Vedyakov A. A., Kolyubin S. A. Ocenivanie parametrov poligarmonicheskogo signala (Estimation of polyharmonic signal parameters), Avtomatika i Telemehanika, 2015, no. 8, pp. 94—114 (in Russian).


Review

For citations:


Le V.T., Korotina M.M., Bobtsov A.A., Aranovskiy S.V., Vo Q.D. Identification of Linear Time-Varying Parameters of Nonstationary Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(5):269-265. (In Russ.) https://doi.org/10.17587/mau.20.259-265

Views: 876


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)