Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Control of Regular Walking for an Exoskeleton with the Electric Drive

Abstract

We consider dynamic model of the motion in the sagittal plane of the exoskeleton of lower limbs, integrated with the similar model of the human operator by means of straps with one or two controllable actuators in each leg. The exoskeleton is additionally loaded with heavy point weight. Considered models of visco-elastic and the rigid attachment of the exoskeleton to the person. The model also takes into account the dynamics of the electric actuators. We study the possibility of designing control systems for various options of the actuators in the joints of the exoskeleton (knee or both in the knee and hip), which also take into account the different degrees of force action of the human operator on the process of movement. The synthesis is based on the method of solving the inverse tasks of the dynamics. The analytical motion control for exoskeleton was designed, which provided locomotion to the hip and knee joints in accordance with the selected desired mode. Synthesis of the control system was carried out on the example of a flat, single support for comfortable walking. The algorithms provide a good quality performance of a given motion and an acceptable cost of energy from the human operator. With sufficient size nominal torque for actuators, the exoskeleton is able to provide substantial assistance to the person carrying the heavy weight, as is evident from the analysis of energy costs. The best energy results with good precision implementation can be obtained in the case of a perfectly rigid model, in which the design of the exoskeleton and the human body are one.

About the Authors

E. K. Lavrovsky
Institute of Mechanics of Moscow State University
Russian Federation


E. V. Pismennaya
Institute of Mechanics of Moscow State University
Russian Federation


References

1. Colombo G., Joerg M., Schreier R., Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000; 37 (6), p. 693-700.

2. Hussain S., Xie S. Q., Liu G. Robot assisted treadmill training: mechanisms and training strategies. Med. Eng. Phys. 2011; 33 (5), p. 527-533.

3. Aoyagi D., Ichinose W. E., Harkema S. J., Reinkens-meyer D. J., Bobrow J. E. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans. Neural. Syst. Rehabil. Eng. 2007; 15 (3), p. 387-400.

4. Wisneski K. J., Johnson M. J. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted adl tasks. J. Neuro Engineering Rehabil., 2007.

5. Montagner A., Frisoli A., Borelli L., Procopio C., Bergamasco M., Carboncini M. C., et al. A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. In: Proceedings of Virtual Rehabilitation: 27-29 September 2007. Venice, 2007, p. 57-64.

6. Antonio J. del-Ama, Angel Gil-Agudol, Jose L. Pons and Juan C. Moreno del-Ama et al. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. of Neuro Engineering and Rehabilitation, 2015. http://www.jneuroengrehab. com/content/11/1/27.

7. Magdo Bortolel, Anusha Venkatakrishnan, Fangshi Zhu, Juan C. Morenol, Gerard E. Francisco, Jose L. Pons and Jose L. Contreras-Vidal. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. // J. of Neuro Engineering and Rehabilitation. https://doi.org/10.1186/s12984- 015-0048-y.

8. Yali Liu, Chong Li, Linhong Ji, Sheng Bi, Xuemin Zhang, Jianfei Huo, and Run Ji. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training // J. of Healthcare Engineering. 2017, June.

9. Suin Kim, Kyoungkwan Ro and Joonbum Bae. Estimation of Individual Muscular Forces of the Lower Limb during Walking using a Wearable Sensor System. J. of Sensors Volume 2017 (2017), Article ID 6747921, 14 p. https://doi.org/10.1155/2017/6747921.

10. Белецкий В. В. Двуногая ходьба. М.: Наука, 1984, 286 с.

11. Лавровский Э. К., Письменная Е. В., Комаров П. А. Управление ходьбой экзоскелетона нижних конечностей при вязко-упругой связи его с телом человека-оператора // МАУ. 2015. № 2. С. 96-101.

12. Формальский А. М. Перемещение антропоморфных механизмов. М.: Наука, 1984, 368 с.

13. Лавровский Э. К., Воронов А. В. Определение масс-инерциальных характеристик ноги человека // Физиология человека. 1998. № 2. С. 91-101.

14. Лавровский Э. К., Письменная Е. В. Алгоритмы управления экзоскелетоном нижних конечностей в режиме одно-опорной ходьбы по ровной и ступенчатой поверхностям // Мехатроника, автоматизация, управление. 2014. № 1. С. 44-51.


Review

For citations:


Lavrovsky E.K., Pismennaya E.V. Control of Regular Walking for an Exoskeleton with the Electric Drive. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(3):160-168. (In Russ.)

Views: 451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)