Preview

Мехатроника, автоматизация, управление

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Об управлении процессом регулярной ходьбы экзоскелета нижних конечностей с помощью электроприводов

Полный текст:

Аннотация

Рассмотрены динамические модели движения в сагиттальной плоскости экзоскелета нижних конечностей с одним или двумя управляемыми приводами в каждой ноге, интегрированного с помощью лямок с аналогичной моделью человека-оператора. Представлены модели экзоскелета, несущего точечный груз, которые описывают вязко-упругое и жесткое крепления экзоскелета к человеку и динамику электроприводов. В работе изучаются возможности построения систем управления для различных вариантов размещения приводов в шарнирах экзоскелета (коленных или одновременно в коленных и тазобедренных), учитываются также возможности разной степени силового воздействия человека-оператора на процесс движения. Закон управления экзоскелетом строится в аналитическом виде, в основу его построения положено соответствие движения коленей и таза механизма заданным желаемым траекториям. Синтез и моделирование выполняются на примере комфортабельного одноопорного движения, наилучшие по энергетике результаты при хорошей точности реализации траекторий удается получить в случае абсолютно жесткой модели, когда конструкция экзоскелета и тело человека составляют одно целое.

Об авторах

Э. К. Лавровский
НИИ механики МГУ
Россия


Е. В. Письменная
НИИ механики МГУ
Россия


Список литературы

1. Colombo G., Joerg M., Schreier R., Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000; 37 (6), p. 693-700.

2. Hussain S., Xie S. Q., Liu G. Robot assisted treadmill training: mechanisms and training strategies. Med. Eng. Phys. 2011; 33 (5), p. 527-533.

3. Aoyagi D., Ichinose W. E., Harkema S. J., Reinkens-meyer D. J., Bobrow J. E. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans. Neural. Syst. Rehabil. Eng. 2007; 15 (3), p. 387-400.

4. Wisneski K. J., Johnson M. J. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted adl tasks. J. Neuro Engineering Rehabil., 2007.

5. Montagner A., Frisoli A., Borelli L., Procopio C., Bergamasco M., Carboncini M. C., et al. A pilot clinical study on robotic assisted rehabilitation in vr with an arm exoskeleton device. In: Proceedings of Virtual Rehabilitation: 27-29 September 2007. Venice, 2007, p. 57-64.

6. Antonio J. del-Ama, Angel Gil-Agudol, Jose L. Pons and Juan C. Moreno del-Ama et al. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. of Neuro Engineering and Rehabilitation, 2015. http://www.jneuroengrehab. com/content/11/1/27.

7. Magdo Bortolel, Anusha Venkatakrishnan, Fangshi Zhu, Juan C. Morenol, Gerard E. Francisco, Jose L. Pons and Jose L. Contreras-Vidal. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. // J. of Neuro Engineering and Rehabilitation. https://doi.org/10.1186/s12984- 015-0048-y.

8. Yali Liu, Chong Li, Linhong Ji, Sheng Bi, Xuemin Zhang, Jianfei Huo, and Run Ji. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training // J. of Healthcare Engineering. 2017, June.

9. Suin Kim, Kyoungkwan Ro and Joonbum Bae. Estimation of Individual Muscular Forces of the Lower Limb during Walking using a Wearable Sensor System. J. of Sensors Volume 2017 (2017), Article ID 6747921, 14 p. https://doi.org/10.1155/2017/6747921.

10. Белецкий В. В. Двуногая ходьба. М.: Наука, 1984, 286 с.

11. Лавровский Э. К., Письменная Е. В., Комаров П. А. Управление ходьбой экзоскелетона нижних конечностей при вязко-упругой связи его с телом человека-оператора // МАУ. 2015. № 2. С. 96-101.

12. Формальский А. М. Перемещение антропоморфных механизмов. М.: Наука, 1984, 368 с.

13. Лавровский Э. К., Воронов А. В. Определение масс-инерциальных характеристик ноги человека // Физиология человека. 1998. № 2. С. 91-101.

14. Лавровский Э. К., Письменная Е. В. Алгоритмы управления экзоскелетоном нижних конечностей в режиме одно-опорной ходьбы по ровной и ступенчатой поверхностям // Мехатроника, автоматизация, управление. 2014. № 1. С. 44-51.


Для цитирования:


Лавровский Э.К., Письменная Е.В. Об управлении процессом регулярной ходьбы экзоскелета нижних конечностей с помощью электроприводов. Мехатроника, автоматизация, управление. 2018;19(3):160-168.

For citation:


Lavrovsky E.K., Pismennaya E.V. Control of Regular Walking for an Exoskeleton with the Electric Drive. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(3):160-168. (In Russ.)

Просмотров: 22


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)