Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Minimum's Principe in Tasks of Optimization Design Algorithms

Abstract

The method of forming optimization algorithms for non-stationary control systems is developed in the article, based on the application of the Hamilton-Jacobi equation and the Pontryagin minimum principle. In this article, the original nonlinear differential equation that describes the original control system is transformed into a system with a linear structure, but with State Dependent Coefficient (SDC) parameters. The use of the quadratic quality criterion in problems with unlimited time of the transient process makes it possible, in the synthesis of control for the transformed system, to move from the need to search for the solution of a scalar partial differential equation (the Hamilton-Jacobi-Bellman equation) to a Riccati-type equation with state-dependent parameters. However, solving the resulting equation in the rate of the object's operation is no less difficult. For its solution, an algorithmic method for the synthesis of controls is proposed. The behavior of the Hamiltonian under optimal control changes during the transient process along a well-defined trajectory. This property of the Hamiltonian was used as the basis for the design of algorithms for optimizing the control system. When the formulated conditions are met, a "transfer" of the quality functional from peripheral values to its minimum value is guaranteed asymptotically. The effectiveness of the developed algorithms is demonstrated by the example of the synthesis of control controlling the supply of antiretroviral drugs HAART to the human body in the presence of HIV. The simulation was carried out in the MATLAB package.

About the Authors

V. N. Afanasyev
National Research University Higher School of Economics
Russian Federation


A. P. Presnova
National Research University Higher School of Economics
Russian Federation


References

1. Алексеев В. М., Тихомиров В. М., Фомин С. В. Оптимальное управление. М.: Наука, 1979. 430 с.

2. Афанасьев В. Н., Колмановский В. Б., Носов В. Р. Математическая теория конструирования систем управления. М.: Высшая школа, 2003. 615 с.

3. Буков В. Н. Адаптивные прогнозирующие системы управления полетом. М.: Наука, 1987. 230 с.

4. Мирошник И. В., Никифоров В. О. Адаптивное управление пространственным движением объектов // Автоматика и телемеханика. 1991. № 9. С. 78-87.

5. Тимофеев А. В. Построение адаптивных систем управления программным движением. Л.: Энергия, 1980. 88 с.

6. Chang H., Astrofi F. Control of HIV Infection Dynamics by the Enhancement of the Immune System // Proc. 17th World Conf. IFAC, Seoul, Korea, 2012. P. 12217-12222.

7. Perelson A. S. Dynamics of hiv infection of CD4 + T cells // Math. Biosciences, 1993. Vol. 114. P. 81-125.

8. Zurakowski R., Teel A. A model predictive control based scheduling method for HIV therapy // Journal of Theoretical Biology, 2006. Vol. 238. P. 368-382.

9. Афанасьев В. Н. Аналитическое конструирование детерминированных конечномерных систем управления. М.: МИЭМ, 2003. 160 с.

10. Афанасьев В. Н. Алгоритмическое конструирование систем управления с неполной информацией. М.: МИЭМ, 2004. 148 с.

11. Wodarz D., Nowak M. A. Specific therapy regimes could lead to long-term immunological control of HIV // Proceedings of the National Academy of Sciences, 1999. Vol. 96. № 6. P. 14464-14469.

12. Афанасьев В. Н. Управление нелинейными неопределенными динамическими объектами. М.: URSS, 2015. 224 c. Minimum's Principe in Tasks of Optimization Design Algorithms


Review

For citations:


Afanasyev V.N., Presnova A.P. Minimum's Principe in Tasks of Optimization Design Algorithms. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(3):153-159. (In Russ.)

Views: 423


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)