Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

On Problem of Stability in Probability for "Partial" Equilibrium Positions of Nonlinear Stochastic Systems

Abstract

The partial stability problems naturally arise in applications either from the requirement of proper performance of a system or in assessing system capability. In addition, a lot of actual (or desired) phenomena can be formulated in terms of these problems and be analyzed with these problems taken as the basis. The following multiaspect phenomena and problems can be indicated: adaptive stabilization; spacecraft stabilization (especially stabilization by rotors); drift of the gyroscope axis; Lotka-Volterra ecological principle, e.t.c. Also very effective is the approach to the problem of stability with respect to all variables based on preliminary analysis of partial stability. The article studies the problem of partial stability for nonlinear stochastic systems of differential equations Ito: stability with respect to a part of the variables in probability of "partial" zero equilibrium position. Initial perturbations of variables that do not define the given equilibrium position can be large (belonging to an arbitrary compact set) with respect to one part of the variables and arbitrary with respect to their other part. A conditions of stability of this type are obtained in the context of a stochastic analog of the Lyapunov functions method, which generalize a number of existing results. Example is given. The problem of unification of process of studying partial stability problems of stationary and non-stationary nonlinear stochastic systems of differential equations is also discussed.

About the Authors

V. I. Vorotnikov
Ural federal university
Russian Federation


Yu. G. Martyshenko
Russian state university of oil and gas
Russian Federation


References

1. Хасьминский Р. З. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров. М.: Наука, 1969.

2. Кушнер Г. Дж. Стохастическая устойчивость и управление. М.: Мир, 1969.

3. Mao X. R. Stochastic Differential Equations, 2 ed., Oxford: Woodhead Publ., 2008.

4. Кац И. Я., Красовский Н. Н. Об устойчивости систем со случайными параметрами // Прикладная математика и механика. 1960. Т. 24. Вып. 5. С. 809-823.

5. Kats I. Ya., Martynyuk A. A. Stability and Stabilization of Nonlinear Systems with Random Structure. London: Taylor & Francis, 2002.

6. Воротников В. И. Об устойчивости и устойчивости по части переменных "частичных" положений равновесия нелинейных динамических систем // Доклады РАН. 2003. Т. 389. № 3. С. 332-337.

7. Воротников В. И., Мартышенко Ю. Г. К задаче частичной детектируемости нелинейных динамических систем // Автоматика и телемеханика. 2009. № 1. С. 25-38.

8. Воротников В. И., Мартышенко Ю. Г. К теории частичной устойчивости нелинейных динамических систем // Известия РАН. Теория и системы управления. 2010. Т. 51. Вып. 5. С. 23-31.

9. Воротников В. И., Мартышенко Ю. Г. Об устойчивости по части переменных "частичных" положений равновесия систем с последействием // Математические заметки. 2014. Т. 96. Вып. 4. С. 496-503.

10. Воротников В. И., Мартышенко Ю. Г. К задаче частичной устойчивости нелинейных дискретных систем // Мехатроника. Автоматизация. Управление. 2017. Т. 18. № 6. С. 371-375.

11. Воротников В. И. Частичная устойчивость и управление: состояние проблемы и перспективы развития // Автоматика и телемеханика. 2005. № 4. С. 3-59.

12. Rajpurohit T., Haddad W. M. Stochastic finite-time partial stability, partial-state stabilization, and finite-time optimal feedback control // Mathematics of Control, Signals, and Systems. 2017. Vol. 29. № 2. art. 10. 37 p.

13. Rajpurohit T., Haddad W. M. Partial-state stabilization and optimal feedback control for stochastic dynamical systems // J. Dynamic Systems, Measurement, and Control. 2017. Vol. 139. № 9. Paper DS-15-1602.

14. Шаров В. Ф. Устойчивость и стабилизация стохастических систем по отношению к части переменных // Автоматика и телемеханика. 1978. № 11. С. 63-71.

15. Vorotnikov V. I. Partial Stability and Control. Boston: Birkhauser, 1998.

16. Potcovaru G. On the partial stability of a dynamical systems with random parameters // An. Univ. Bucur., Mat. 1999. Vol. 48. № 2. P. 163-168.

17. Ignatyev O. Partial asymptotic stability in probability of stochastic differential equations // Statistics & Probability Letters. 2009. Vol. 79. № 5. P. 597-601.

18. Ignatyev O. New criterion of partial asymptotic stability in probability of stochastic differential equations // Applied Mathematics and Computation. 2013. Vol. 219. № 23. P. 10961-10966.

19. Зуев А. Л., Игнатьев А. О., Ковалев А. М. Устойчивость и стабилизация нелинейных систем. Киев: Наукова Думка, 2013.

20. Kao Y., Wang C., Zha F., Cao H. Stability in mean of partial variables for stochastic reaction - diffusion systems with Markovian switching // J. of the Franklin Institute. 2014. Vol. 351. № 1. P. 500-512.


Review

For citations:


Vorotnikov V.I., Martyshenko Yu.G. On Problem of Stability in Probability for "Partial" Equilibrium Positions of Nonlinear Stochastic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(3):147-152. (In Russ.)

Views: 485


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)