Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Application of Multidimensional Linearization in Quasi-Optimal Controllers Synthesis in the Functional of Generalized Work

https://doi.org/10.17587/mau.20.131-142

Abstract

The paper investigates the task of the analytically  design of an optimal controllers (ADOC)  as defined by A. A. Krasovskij for stable multidimensional objects, which are described by matrix differential equations with polynomial non-linearity from phase coordinates.  The  investigated class of polynomial  control objects has a wide application: these models are used to describe the motion of systems with a very different nature — electromechanical  equipment, chemical reactors, industrial recycling facilities, biological and ecological systems,  etc.

The  most suitable  task  solution  for the ADOC  is the power series method,  which  in comparison  with other methods, allows to finding  control laws in widest range of the  object’s phase  space.  However, its realization  is dealt  with  a large amount  of calculations  and it is less formalized, so it comparatively  hard for programming. In this paper the quasi-optimal controller’s synthesis method is suggested. It can reduce the disadvantages  of the previously mentioned  power series method. It  uses the multidimensional linearization  of polynomial  objects procedure which  implements  extension  of the object state space with new coordinates. These coordinates are the products of the original phase coordinates and the application of the matrix theory with the Kronecker product. The synthesis method can help to find an approximate  ADOC task solution with a high degree of accuracy.  The  method  is very easy to use, because it mainly  based on uses of well-known software for the linear quadratic  task solution in the optimal control.

The  ADOC  task  solution  accuracy  is defined  by the accuracy  of the corresponding degree (k  = 2, 3...)  that  chosen for the object of the quasi-linearized model under study. It must be noted, that the kth  power polynomial  components  of the control objects described,  is considered  in the kth   power linearized  model.  Therefore, suggested synthesis method  provides an accurate  solution as a common  power series method, holding its terms to the kth  power inclusive.  However, the devised synthesis  method  as a rule gives more  accurate  results,  because  it takes  into  account  the  functional  matrix  of the  used quasilinear  model of the object state augmented  vector containing the original object’s phase coordinates products.

About the Author

V. I. Lovchakov
Tula State University
Russian Federation

Lovchakov Vladimir I. - Full  Professor, Department of electrical engineering and  electrical equipment.

Tula, 300600.



References

1. Krasovskij A. A. Spravochnik po teorii avtomaticheskogo upravlenija (Control Theory), Moscow, Nauka Publ., 1987 (in Russian).

2. Kolesnikov A. A. Sovremennaja prikladnaja teorija upravlenija (Modern Applied Control Theory), Moscow, Taganrog, TRTU Publ., 2000 (in Russian).

3. Porter W. A. The Review of the Non-linear Systems Theory, IEEE Publ., 1976, vol. 64, no. 1, pp. 23—30 (in Russian).

4. Sage A. P., White C. C. Optimum Systems Control, Moscow, Radio i svjaz’ Publ., 1982, 392 p. (in Russian).

5. Afanas’ev V. N., Kolmanovskij V. B., Nosov V. R. Matematicheskaja teorija konstruirovanija sistem upravlenija (Mathematical Theory of Control Systems’ Design), Moscow, Vysshaja shkola Publ., 1998, 576 p. (in Russian).

6. Krasovskij A. A., Bukov V. I., Shendrik V. S. Universal’nye algoritmy optimal’nogo upravlenija nepreryvnymi ob`ektami (Universal A lgorithms of the Optimum Continuous Object Control), Moscow, Nauka Publ., 1977, 272 p (in Russian).

7. Bukov V. N. Adaptivnye prognozirujushhie sistemy upravlenija poletom (Adaptive Predictive Flight-Control Systems), Moscow, Nauka Publ., 1987, 232 p. (in Russian).

8. Filimonov N. B. Problema kachestva processov upravlenija: smena optimizacionnoj paradigmy (Problem of quality of control processes: change of an optimising paradigm), Mekhatronika, avtomatizatsiya, upravlenie, 2010, no. 12, pp. 2—10 (in Russian).

9. Uonem M. Linejnye mnogomernye sistemy upravlenija. Geometricheskij podhod (Linear multidimensional control systems. The geometrical approach), Moscow, Nauka, 1980, 376 p. (in Russian).

10. Lankaster P. Teorija matric (Matrix Theory), Moscow, Nauka Publ., 1982, 269 p. (in Russian).

11. Lovchakov V. I., Lovchakov E. V., Suhinin B. V. Metod mnogomernoj linearizacii polinomial’nyh sistem upravlenija (Linearization Method of the Polynomial Control Systems), Tula, Izvestija TSU Publ., 2009, Tehnicheskie nauki Series, no. 1, part 2, pp. 18—26 (in Russian).

12. Lovchakov V. I., Lovchakov E. V., Shibyakin O. A. Mnogomernaya linearizaciya ob"ektov upravleniya s polinomial’nymi nelinejnostyam (Multidimensional linearization of control objects with polynomial nonlinearities), Journal of Advanced Research in Technical Science, 2018, iss. 12 (in print).

13. Pupkov K. A., Kapalin V. I., Jushhenko A. S. Funkcional’nye rjady v teorii nelinejnyh system (Series of Functions in the Non-linear systems Theory), Moscow, Nauka Publ., 1976, 448 p. (in Russian).

14. Lovchakov V. I., Suhinin B. V., Fomichev A. A., Feofilov E. I. Osnovy teorii sinteza optimal’nyh sistem upravlenija jelektrotehnicheskimi ob`ektami (Synthesis of the Optimum Control Systems for the Electrotechnical Objects: Fundamentals), Tula, TSU Publ., 2009, 160 p. (in Russian).


Review

For citations:


Lovchakov V.I. Application of Multidimensional Linearization in Quasi-Optimal Controllers Synthesis in the Functional of Generalized Work. Mekhatronika, Avtomatizatsiya, Upravlenie. 2019;20(3):131-142. (In Russ.) https://doi.org/10.17587/mau.20.131-142

Views: 561


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)