Development of a Non-hazardous Path Planning Algorithm for Mars Rover in Real Terrain Enviroment
https://doi.org/10.17587/mau.19.734-743
Abstract
About the Authors
G. WangRussian Federation
Moscow, 105005.
A. V. Fomichev
Russian Federation
Ph. D., Associate Professor.
Moscow, 105005.
References
1. Carsten J., Rankin A., Ferguson D., Stentz A. Global path planning on board the mars exploration rovers. In Aerospace Conference, 2007 IEEE (pp. 1—11).
2. Tan Liguo, Fomichev A. V. Planirovanie prostranstvennogo marshruta poleta bespilotnogo letatelqnogo appalata s ispolqzovaniem metodov chactichno celochislennogo linejnogo programmirovaniya (The spatial flight route planning of unmanned aerial vehicles using the methods of mixed-integer linear programming), Vectnik moskovckogo gosudarstvennogo technicheckogo universiteta im. N. E. Baumana. Seriya "Priborostroenie", 2016 (in Russian).
3. Ferguson D., Stentz A. Using interpolation to improve path planning: The Field D* algorithm, Journal of Field Robotics, 23.2 (2006): 79—101.
4. Fomichev A. V., Tan Liguo. Razrabotka algoritma byhstroj kompensacii pogreshnostej kompleksirovannoj inercialqno-sputnikoj sistemyh navigacii malogabaritnyhch bespilotnyhch letatelqnyhch apparatov v usloviyach slozhnoj sredyh (Development of an algorithm for rapid error-compensation for small unmanned aerial vehicles with a complex inertial satellite navigation system in a complex environment), Nauka i obrazovanie: nauchnoe izdanie MGTU im. N. E. Baumana, 2015, no. 10 (in Russian).
5. Fomichev A. V., Wang Guoyan. Sravnitelqnyhq analiz me todov planirovaniya marshruta dvizheniya dlya planetochoda (Comparison analysis of path-planning methodologies for planetary rover), Informacionnyhe Sistemyh i Technologii, 2016 (in Russian).
6. Available at: https://ru.wikipedia.org/wiki/Эвристический_алгоритм/ (date of access 25.04.2018).
7. Nash A., Koenig S. Any-angle path planning, AI Magazine, 2013, vol.34, no. 4., pp. 85—107.
8. Choi S., Lee J. Y., Yu W. Fast any-angle path planning on grid maps with non-collision pruning. Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference on. IEEE, 2010.
9. Uras T., Koenig S. Speeding-Up Any-Angle Path-Planning on Grids, ICAPS, 2015, pp. 234—238.
10. Nash A., Daniel K., Koenig S. Aelner A. Theta*: Any angle path planning on grids, Proceedings AAAI Conference on Artificial Intelligence, 2007, vol. 7, pp. 1177—1183.
11. Mendonca P., Goodwin S. C-Theta*: Cluster based PathPlanning on Grids. International Conference on Computational Science and Computational Intelligence.2015. Mendonca, Pramod, and Scott Goodwin. "C-Theta*: Cluster Based Path-Planning on Grids." Computational Science and Computational Intelligence (CSCI), 2015 International Conference on. IEEE, 2015, pp. 605—608.
12. Nash A., Koenig S., Tovey C. Lazy theta*: Any-angle path planning and path length analysis in 3d, Third Annual Symposium on Combinatorial Search, 2010.
13. Available at: https://en.wikipedia.org/wiki/Spirit_ (rover) / (date of access 25.04.2018). 14. Available at: https://astrogeology.usgs.gov/search/map/Phobos/MarsExpress/HRSC/Phobos_ME_HRSC_DEM_ Global_2ppd / (date of access 25.04.2018).
Review
For citations:
Wang G., Fomichev A.V. Development of a Non-hazardous Path Planning Algorithm for Mars Rover in Real Terrain Enviroment. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(11):734-744. (In Russ.) https://doi.org/10.17587/mau.19.734-743