Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Dynamic Equations of Docking Mechanisms. Part 2. Algorithms for Kinematical Loops

Abstract

From the point of view of a docking dynamical process, a multi-loop docking mechanism, in spite of its low mass, is a more complex mechanical system than a spacecraft. An approach providing high computational efficiency of dynamic simulation algorithms for such a class of mechanisms is considered in this paper. Before simulation, a multi-loop mechanical system is transformed to a tree structure using constrain equations instead of some joints. Each loop of a docking mechanism can be partitioned to a controlled and a dependent kinematical chains with independent and dependent joint variables, and constrain equations for its replaced joint are non-singular. This paper describes an application of the generalized coordinate partitioning method (GCPM), which specifies that dependent joint accelerations of the transformed mechanical system are expressed as a function of independent ones through matrixes, which are used to reduce the dimension of dynamic equations. All loops and dependent chains of a docking mechanism are numbered from outermost to innermost. In contrast to GCPM, constrain equations are formulated in the inverse sequence, i.e. starting with the maximum loop number, and for a current loop they incorporate all joint accelerations except previous loops. So, dependent joint accelerations of a current loop are expressed as a function of joint accelerations of all next loops. It allows reducing the dimension of dynamic equations regardless of various combinations of outer and inner kinematical loops of docking mechanisms. Redundant mathematical operations with zero matrix elements can be eliminated using symbolic manipulation system. For higher computational efficiency, analytical solutions of joint coordinates constrain equations are proposed for main types of dependent kinematical chains.

About the Author

A. A. Yaskevich
Rocket Space Corporation "Energia"
Russian Federation


References

1. ParalleMIC - the Parallel Mechanisms Information Center. URL: http://www.parallemic.org (дата обращения: 04.09.2017)

2. Бойков В. Г., Юдаков А. А. Моделирование динамики систем твердых и упругих тел в программном комплексе EULER // Изв. РАН. Информационные технологии и вычислительные системы. 2001. № 1. С. 42-52.

3. Горобцов А. С. Формирование уравнений движения пространственной механической системы, содержащей кинематические цепи произвольной структуры // Машиностроение и инженерное образование. 2005. № 2. С. 46-54.

4. Open Dynamic Engine. Home page. URL: http://www. ode.org (дата обращения: 04.09.2017).

5. Petzold L. R. Computational challenges in mechanical system simulation // Computer-Aided Analysis of rigid and flexible Mechanical Systems. Kluwer Academic Publishers, Netherlands, 1994. P. 483-499.

6. Pogorelov D. Differential-algebraic equations in multibody system modeling // Numerical algorithms. 1998. Vol. 19. P. 183- 194.

7. Rampalli R., Vikram Sohoni V., Steigerwald M. F., Joseph F. McGrath J. F. Numerical Methods in ADAMS Mechanical Simulation Code. Mechanical Dynamics, Inc., 1990. 14 P.

8. Ibrahim Z. B., Suleiman M., Othman K. I. Direct block backward differentiation formulas for solving second order ordinary differential equations // Int. Journal of Mathematical, Physical, Electrical and Computer Engineering, 2008. Vol. 2, N. 2. P. 260-262.

9. Baumgarte J. W. Stabilization of Constraints and Integrals of Motion in Dynamic Systems // Computer Methods in Applied Mechanics and Engineering, 1972. Vol. 1. P. 1-16.

10. Горобцов А. С., Солоденков С. В. Алгоритмы численного интегрирования уравнения движения систем тел с множителями Лагранжа // Машиностроение и инженерное образование. 2005. № 3. C. 20-27.

11. Brandl H., Johanni R., Otter M. An algorithm for the simulation of multibody systems with kinematical loops // Proc. of the 7th World Congress on The Theory of Machines and Mechanisms. Sevilla. 1987. Vol. 2. P. 407-411.

12. Wicker J. Dynamic behavior of spatial linkages: Exact equation of motion // Transaction of the ASME: Ser. B. 1969. Vol. 9, N. 1. P. 251-258.

13. Wehage R. A., Haug J. E. Generalized coordinate partitioning for dimension reduction in analysis of dynamical systems // Journal of Mechanical Design 1982. N. 104. P. 247-255.

14. Яскевич А. В. Уравнения динамики стыковочных механизмов. Часть 1. Алгоритмы для механических систем со структурой дерева // Мехатроника, автоматизация, управление. 2018. Т. 19, № 1. С. 58-64.


Review

For citations:


Yaskevich A.A. Dynamic Equations of Docking Mechanisms. Part 2. Algorithms for Kinematical Loops. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(2):139-144. (In Russ.)

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)