A Method for Bipedal Robot Locomotion Control along an Arbitrary Trajectory
https://doi.org/10.17587/mau.19.633-641
Abstract
This paper presents an algorithm for stable bipedal walking control along an arbitrary curve. The algorithm starts with a foot planner, which takes a parametrically defined desired path as an input and calculates feet positions and orientations at each step. Zero moment point (ZMP) concept is used for robot stability control. The dynamics of the robot is modeled as a running cart on a table. Given the reference ZMP trajectory, ZMP tracking servo controller based on preview control theory is used to calculate robot’s center of mass (CoM) trajectory. The preview controller is made of three terms: the integral error of ZMP, the state feedback proportional to a current state vector and the preview action which takes into account future values of the desired ZMP position. We propose robot’s state estimator based on linear Kalman filter with measured CoM acceleration and position as system inputs. Swing foot trajectories are calculated using trigonometric functions, since they are simple and can provide zero velocities at contact moments. We put some additional constraints on a system by assuming that there is no forward-backward inclination of the robot trunk and swing foot is always parallel to the ground. To avoid kinematic limits in hip and ankle roll joints we calculate a minimal angle to rotate robot trunk in frontal plane. After position and orientation of robot trunk and swing foot are found we apply inverse kinematics solution for robot legs to get robot joint angles. Finally, joint angles are sent to robot actuators. Software package based on ROS operating system was developed for AR601 robot. Verification tests were executed with robot model in Gazebo simulator. The robot successfully completed series of experiments confirming modelling results.
About the Authors
R. R. KhusainovRussian Federation
Khusainov Ruslan R., Researcher.
Innopolis.
A. S. Klimchik
Russian Federation
Innopolis.
E. A. Magid
Russian Federation
Kazan.
References
1. Ha T., Choi C.-H. An effective trajectory generation method for bipedal walking, Robotics and Autonomous Systems, 2007, vol. 55, no. 10, pp. 795—810.
2. Kim J.-Y., Kim Y.-S. Human-like gait generation for biped android robot using motion capture and zmp measurement system, International Journal of Humanoid Robotics, 2010, vol. 07, no. 04, pp. 511—534.3
3. . Strom J., Slavov G., Chown E. Omnidirectional Walking Using ZMP and Preview Control for the NAO Humanoid Robot, RoboCup 2009: Robot Soccer World Cup XIII / Baltes J. i dr. Springer Berlin Heidelberg, 2010, pp. 378—389.
4. Piperakis S., Orfanoudakis E., Lagoudakis M. G. Predictive control for dynamic locomotion of real humanoid robots, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 4036—4043.
5. Vukobratović M., Borovac B. Zero-moment point — thirty five years of its life, International Journal of Humanoid Robotics, 2004, vol. 01, no. 01, pp. 157—173.
6. Kajita S., Hirukawa H., Harada K., Yokoi K. Introduction to humanoid robotics. Springer, 2014.
7. Androidnaya tekhnika, available at: https://npo-at.com/.
8. Sirazetdinov R. T., Devaev V. M., Kamalov A. R., Kacev man E. M. Programmnyj kompleks modelirovaniya i virtualizacii antropomorfnogo robota AR601 na osnove sistem ros i gazebo(Software package for modeling and virtualization of the anthropomorphic robot AR601 based on ROS and Gazebo systems), Sed’maya vserossijskaya nauchno-prakticheskaya konferenciya "Imitacionnoe modelirovanie, teoriya i praktika: trudy konferencii, vol. 2, pp. 328—331 (in Russian).
9. Gorobcov A., Andreev A., Tarasov P., Skorikov A., Karcov S. Sintez ustojchivyh kvazistaticheskih rezhimov shaganiya antropomorfnogo robota (Synthesis of stable quasi-static modes of walking of anthropomorphic robot), Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2016, no. 6 (185) (in Russian).
10. Lozh k in P. V. , Tolstel’ O. V. Sozdanie programmnoapparatnogo kompleksa, obespechivayushchego dinamicheskoe ravnovesie i dvizhenie RTK AR-600(Creation of a hardwaresoftware complex providing dynamic balance and motion of the AR-600 RTK), Vestnik Baltijskogo federal’nogo universiteta im. I. Kanta, 2013, no. 4 (in Russian).
11. Khusainov R., Afanasyev I., Sabirova L., Magid E. Bipedal robot locomotion modelling with virtual height inverted pendulum and preview control approaches in Simulink environment, Journal of robotics networking and artificial life, 2016, vol. 3, no. 3,pp. 182—187.
12. Hubicki C. M., Hereid A., Grey M. X., Thomaz A. L., Ames A. D. Work those arms: Toward dynamic and stable humanoid walking that optimizes full-body motion, 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 1552—1559.
13. Peiper D. L. The kinematics of manipulators under computer control. 1968, DTIC Document.
14. Vukobratović M., Stepanenko J. On the stability of anthropomorphic systems, Mathematical Biosciences, 1972, vol. 15,no. 1—2, pp. 1—37.
15. Siciliano B., Khatib O. Springer handbook of robotics. Springer, 2016.
16. Albert A., Gerth W. Analytic Path Planning Algorithms for Bipedal Robots without a Trunk, Journal of Intelligent and Robotic Systems, 2003, vol. 36, no. 2, pp. 109—127.
17. Khusainov R., Afanasyev I., Magid E. Anthropomorphic robot modelling with virtual height inverted pendulum approach in Simulink: step length and robot height in-fluence on walking stability, Int. Conf. on Artificial Life and Robotics, 2016.
18. Kajita S., Kanehiro F., Kaneko K., Fujiwara K., Harada K., Yokoi K., Hirukawa H. Biped walking pattern generation by using preview control of zero-moment point, Robotics and Automation, 2003. Proceedings. ICRA ‘03. IEEE International Conference on, vol. 2, 2003, pp. 1620—1626.
19. Katayama T., Ohki T., Inoue T., Kato T. Design of an optimal controller for a discrete-time system subject to previewable demand, International Journal of Control, 1985, vol. 41, no. 3,pp. 677—699.
20. Grewal M. S. Kalman filtering, International Encyclopedia of Statistical Science, Springer Berlin Heidelberg, 2011, pp. 705—708.
21. ROS, available at: http://www.ros.org/.
Review
For citations:
Khusainov R.R., Klimchik A.S., Magid E.A. A Method for Bipedal Robot Locomotion Control along an Arbitrary Trajectory. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(10):633-641. (In Russ.) https://doi.org/10.17587/mau.19.633-641