A Three-Dimensional Version of the Hough Method in the Reconstruction of the External Environment and Navigation
https://doi.org/10.17587/mau.19.552-560
Abstract
About the Authors
V. P. NoskovRussian Federation
Ph. D., Special robotics and mechatronics department, NIISM sector head
I. O. Kiselev
Russian Federation
References
1. Lapshov V. S., Noskov V. P. Boj v gorode. Boevye i obespechivajushhie roboty v uslovijah urbanizirovannoj territorii (Fight in the city. Combat and providing robots in an urbanized area), Izvestija JuFU. Tehnicheskie Nauki, 2011, no. 3, pp. 142—146 (in Russian).
2. Noskov A. V., Noskov V. P. Raspoznavanie orientirov v dal’nometricheskih izobrazhenijah (Recognition of landmarks in the long-range images), Mobil’nye Roboty i Mehatronnye Sistemy, 2001, pp. 179—192 (in Russian).
3. Noskov V. P., Noskov A. V. Navigacija mobil’nyh robotov po dal’nometricheskim izobrazhenijam (Navigation of mobile robots on the dalometric images), Mkehatronika, Avtomatizatsiya, Upravlenie, 2005, no. 12, pp. 16—21 (in Russian).
4. Noskov V. P., Rubcov I. V. Opyt reshenija zadachi avtonomnogo upravlenija dvizheniem mobil’nyh robotov (Experience in solving the problem of autonomous traffic control of mobile robots), Mekhatronika, Avtomatizatsiya, Upravlenie, 2005, no. 12, pp. 21—24 (in Russian).
5. Noskov V. P., Rubcov I. V., Romanov A. Ju. Formirovanie ob’edinennoj modeli vneshnej sredy na osnove informacii videokamery i dal’nomera (Formation of the integrated model of the external environment on the basis of the information of the video camera and the range finder), Mekhatronika, Avtomatizatsiya, Upravlenie, 2007, no. 8, pp. 2—5 (in Russian).
6. Zagorujko S. N., Kaz’min V. N., Noskov V. P. Navigacija BPLA i 3D-rekonstrukcija vneshnej sredy po dannym bortovoj STZ (Navigation UAV and 3D-reconstruction of the external environment according to the on-board technical vision system), Mekhatronika, Avtomatizatsiya, Upravlenie, 2014, no. 8, pp. 62—68 (in Russian).
7. Segal A., Haehnel D., Thrun S. Generalized-ICP, Proc. of Robotics: Science and Systems, RSS, 2009.
8. Mitra N., Gelfand N., Pottmann H., Guibas L. J. Registration of Point Cloud Data from a Geometric Optimization Perspective, Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, 2004, pp. 22—31.
9. Kaz’min V. N., Noskov V. P. Vydelenie geometricheskih i semanticheskih ob’ektov v dal’nometricheskih izobrazhenijah dlja navigacii robotov i rekonstrukcii vneshnej sredy (Isolation of geometric and semantic objects in the long-range images for navigation of robots and reconstruction of the external environment), Izvestija JuFU. Tehnicheskie Nauki, 2015, no. 10 (171), pp. 71—83 (in Russian).
10. Pavlovskij V. E., Pavlovskij V. V. Tehnologii SLAM dlja podvizhnyh robotov [SLAM for mobile robots], Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, no. 6, pp. 384—394 (in Russian).
11. Konouchine A., Gaganov V., Veznevets V. AMLESAC: A new maximum likelihood robust estimator, Proc. Graphico”, 2005, vol. 5, pp. 93—100.
12. Klasing K. et al. Comparison of surface normal estimation methods for range sensing applications, Robotics and Automation. 2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 3206—3211.
13. Holz D. et al. Real-time plane segmentation using RGB-D cameras, Robot Soccer World Cup, Springer, Berlin, Heidelberg, 2011, pp. 306—317.
14. Comaniciu D., Meer P., Mean shift: A robust approach toward feature space analysis, IEEE Transactions on pattern analysis and machine intelligence, 2002, vol. 24, no. 5, pp. 603—619.
15. Berkmann J., Caelli T. Computation of surface geometry and segmentation using covariance techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, vol. 16, no. 11, pp. 1114—1116.
16. Mitra N. J., Nguyen A., Guibas L. Estimating surface normals in noisy point cloud data, International Journal of Computational Geometry & Applications, 2004, vol. 14. no. 04—05, pp. 261—276.
17. Velizhev A., Shapovalov R., Potapov D., Tret’jak E., Konushin A. Avtomaticheskaja segmentacija oblakov tochek na osnove jelementov poverhnosti (Automatic segmentation of point clouds based on surface elements), Trudy konferencii GraphiCon — 2009, 2009, pp. 241—245 (in Russian).
18. Sedlacek D., Zara J. Graph cut based point-cloud segmentation for polygonal reconstruction, International Symposium on Visual Computing, Springer, Berlin, Heidelberg, 2009, pp. 218—227.
19. Borrmann D. et al. The 3d hough transform for plane detection in point clouds: A review and a new accumulator design, 3D Research, 2011, vol. 2, no. 2. pp. 3.
20. Goshin E. V., Loshkareva G. E. Informacionnaja tehnologija segmentacii raznorakursnyh izobrazhenij s ispol’zovaniem trjohmernogo preobrazovanija Hafa (Information technology for segmentation of different-angle images using the three-dimensional Haught transformation), Izdatel’stvo SGAU, Materialy Mezhdunarodnoj konferencii i molodjozhnoj shkoly "Informacionnye tehnologii i nanotehnologii", 2016, pp. 342—349 (in Russian).
21. Hough P. V. C. Method and means for recognizing complex patterns: patterns, 3069654 USA, 1962.
Review
For citations:
Noskov V.P., Kiselev I.O. A Three-Dimensional Version of the Hough Method in the Reconstruction of the External Environment and Navigation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(8):552-560. (In Russ.) https://doi.org/10.17587/mau.19.552-560