Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Minimax l-Optimal at Time-Domain Linear Filtering

https://doi.org/10.17587/mau.19.499-507

Abstract

The article is devoted to one approach to optimal filtration. We consider a Wiener filter scheme. The proposed statement has two differences from the classical one. The first difference is that the input influences (useful signal and interference) are limited to the maximum absolute values, and not variances. The second difference is that the quality criterion is also the maximum absolute value, and not the variance of the error. Thus, the quadratic criterion in Wiener’s formulation is replaced by a criterion in the form of the l∞-norm (Chebyshev-norm). Therefore, the proposed problem is called the l∞optimal filtering problem. An original way of selecting input filters for signals for this task is proposed. The method allows creating sets of signals with complex limitations of the absolute values of the signals and their derivatives. The calculation of the quality criterion reduces to Bulgakov's problem of the accumulation of perturbations. For a system with discrete time, the quality criterion is written in the form of a sum of an infinite series. Convergence conditions of the series are obtained. If the conditions of convergence are satisfied, an infinite series with any desired accuracy can be replaced by its partial sum. In this case, a quality criterion is obtained in the form of the l1-norm of the impulse response of the filter. It is proposed to numerically search for the impulse response of an optimal filter by the method of subgradient descent. An example of searching for a l∞-optimal filter is considered. The result is compared with classic bandpass filters. The possibility of reducing the phase delay of the filter in the passband is shown.

About the Authors

N. N. Makarov
Tula State University
Russian Federation

Ph. D., Professor

Tula, 300012, Russian Federation


V. E. Semashkin
АО "Конструкторское бюро приборостроения им. академика А. Г. Шипунова"
Russian Federation


References

1. Isermann R. Digital control systems. Berlin: SpringerVerlag, 1981.

2. Rabiner L. R., Gold B. Theory and application of digital signal processing. Englewood Cliffs, New Jersey, Prentice-Hall, 1975.

3. Başar T., Bernhard P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach. Springer, 2008.

4. Kurkin O. M., Korobochkin Ju. V., Shatalov S. A. Minimaxnaja obrabotka informacii. (Minimax information processing), Moscow, Jenergoatomizdat, 1990 (in Russian).

5. Cappellini V., Constantinides A. G., Emiliani P. E. Digital filters and their applications, London, Academic Press, 1978.

6. Filimonov N. B. Problema kachestva processov upravlenija: smena optimizacionnoj paradigmy (The problem of quality of control processes: change of an optimizing paradigm), Mehatronika, Avtomatizatsiya, Upravlenie, 2010, no. 12, pp. 2—10 (in Russian).

7. Polyak B. T., Shcherbakov P. S. Hard problems in linear control systems theory: Possible approaches to solution, Automation and Remote Control, 2005, vol. 66, iss. 5, pp. 681—718.

8. Bulgakov B. V. O nakoplenii vozmyshhenij v linejnyh kolebatelnyh sistemah s postojannymi koefficientami (About disturbances accumulation in linear oscillation systems with constant coefficients), Doklady AN SSSR, 1946, vol. 51, iss. 5, pp. 339—342 (in Russian).

9. Bendat J. Principles and applications of random noise theory, Wiley, 1958.

10. Makarov N. N. Garantirovannaja tochnost v proektirovanii sledjashhih system (Guaranteed precision in tracing system design), Izvestija Vuzov. Jelektromehanika, 1980, vol. 7, pp. 744—747 (in Russian).

11. Chernousko F. L. State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994.

12. Makarov N. N., Semashkin V. E. Estimation and Optimization of Maximum Deviations in Dynamical Control System under Complexly Shaped Disturbances, Journal of Computer and Systems Sciences International, 2012, vol. 51, no. 3, pp. 349—365.

13. Sprugnoli R. Negation of binomial coefficients, Discrete Mathematics, 2008, vol. 308, рр. 5070—5077.

14. Edelman A., Strang G. Pascal Matrices, American Mathematical Monthly, 2004, vol. 111, no. 3, pp. 189—197.

15. Poljak B. T. Metody l1-optimizacii v upravlenii i filtracii. Doklad na obshhem plenarnom zasedanii (l1-optimization methods in control and filtering), 3-ja multikonferencija po problemam upravlenija, S.-Pb., 2010 (in Russian).

16. Pupkov K. A., Egupov N. D., Filimonov N. B. and others. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija (Methods of classic and modern control systems theory), vol. 5. Metody sovremennoj teorii avtomaticheskogo upravlenija (Methods of modern control systems theory), Moscow, Publishing house of MGTU im. N. Je. Baumana, 2004 (in Russian).

17. Nesterov Y. Introductory lectures on convex optimization: a basic course, Kluwer, 2004.


Review

For citations:


Makarov N.N., Semashkin V.E. Minimax l-Optimal at Time-Domain Linear Filtering. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(8):499-507. (In Russ.) https://doi.org/10.17587/mau.19.499-507

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)