Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Probability of a Resonance Capture for an Asymmetric Capsule During its Controlled Descent in the Martian Atmosphere

https://doi.org/10.17587/mau.18.564-571

Abstract

The authors consider a descent of a spacecraft capsule with small controlled aerodynamic and constant mass asymmetries in the Martian atmosphere. The aerodynamic asymmetries of the capsule are due to two controlled surfaces, which have two positions: closed and open ones. As is faown, small mass and aerodynamic asymmetries of the capsule can lead to various types of resonance phenomena and effects. It should be noted that the cause of the accidents during an atmospheric descent of a spacecraft may be a resonance capture, which leads to a significant increase of the angle of attach. The purpose of this wo^ is to provide analysis and estimation of the probability of a principal resonance capture of a capsule with small variable mass and aerodynamic asymmetries resulting in arbitrary angles of attacL The theoretical significance of this wo^ is an approximate analytical estimation of the probability of a principal resonance capture. This estimation of the probability of a resonance capture is expressed in the terms of the elementary functions. Of practical interest is implementation of a controllable transition to the coplanar combination of the asymmetries for the capsules having an orthogonal combination of the asymmetries during a reentry. This transition may be implemented according to the introduced control law. Calculation of the probability of a resonance capture is considered on the example of the problem of the atmospheric descent of a capsule with the mass-inertial characteristics similar to the Mars Polar Lander spacecraft. The authors demonstrate that a transition from the orthogonal to the coplanar combination of the asymmetries contributes to a significant reduction of the probability of a resonance capture. The presented estimates can be used for calculation of the probability of capture or passage through a principal resonance during a descent of a spacecraft in the atmosphere of any planet.

About the Authors

V. V. Lyubimov
Samara University
Russian Federation


E. V. Kurkina
Samara University
Russian Federation


References

1. Li S., Jiang X. Review and prospect of guidance and control for Mars atmospheric entry // Journal Progress in Aerospace Sciences. 2014. Vol. 69. P. 40-57.

2. Seiff A. Structure of the atmosphere of Mars and Venus below 100 kilometers // Advances of Space Research. 1987. Vol. 7. N. 12. P. 5-16.

3. Keating G. M. The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor // Science. 1998. Vol. 279. N. 5357. P. 1672-1676.

4. Lorenz R. Attitude and angular rates of planetary probes during atmospheric descent: Implications for imaging // Journal Planetary and Space Science. 2010. Vol. 58. P. 838-846.

5. Dai J., Xia Y. Mars atmospheric entry guidance for reference trajectory tracking // Aerospace Science and Technology. 2015. Vol. 45. P. 335-345.

6. Дивеев А. И., Шмалько Е. Ю. Метод аппроксимации кривыми Безье для решения задачи оптимального управления посадкой космического аппарата / Под ред. чл.-корр. РАН Ю. С. Попкова. М.: ИСА РАН. 2007. Т. 31 (1). С. 8-13.

7. Белоконов В. М., Заболотнов М. Ю. Оценка вероятности захвата в резонансный режим движения космического аппарата при спуске в атмосферу // Космические исследования. 2002. Т. 40. № 5. С. 503-514.

8. Lyubimov V. V. Dynamics and Control of Angular Acceleration of a Re-Entry Spacecraft with a Small Asymmetry in the Atmosphere in the Presence of the Secondary Resonance Effect // International Siberian Conference on Control and Communications. 2015. P. 1-4.

9. Любимов В. В. Асимптотический анализ вторичных резонансных эффектов при вращении космического аппарата с малой асимметрией в атмосфере // Известия вузов. Авиационная техника. 2014. № 3. С. 23-28.

10. Бобылев А. В., Ярошевский В. А. Оценка условий захвата в режим резонансного вращения неуправляемого тела при спуске в атмосферу // Космические исследования. 1999. Т. 37. № 5. С. 515-523.

11. Любимов В. В. Оценка вероятности захвата в резонанс при движении динамически несимметричного твердого тела в атмосфере // Весник Самарского гос. техн. ун-та. Сер.: Физ.-мат. науки. 2007. № 2 (15). С. 110-115.

12. Заболотнов Ю. М. Метод исследования резонансного движения одной нелинейной колебательной системы // Известия РАН. Механика твердого тела. 1999. Вып. 1. С. 33-45.

13. Заболотнов Ю. М. Асимптотический анализ квазилинейных уравнений движения в атмосфере КА с малой асимметрией I // Космические исследования. 1993. Т. 31. № 6. С. 39-50.

14. Ярошевский В. А. Движение неуправляемого тела в атмосфере. М.: Машиностроение, 1978. 168 с.

15. Нейштадт А. И. Усреднение, прохождение через резонансы и захват в резонанс в двухчастотных системах // Успехи математических наук. 2014. № 419. С. 3-80.

16. Mars Polar Lander. URL: https://ru.wikipedia.org/wiki/ Mars_Polar_Lander.

17. Заболотнов Ю. М., Любимов В. В. Вторичный резонансный эффект при движении КА в атмосфере // Космические исследования. 1998. Т. 36. № 2. С. 206-214.


Review

For citations:


Lyubimov V.V., Kurkina E.V. Probability of a Resonance Capture for an Asymmetric Capsule During its Controlled Descent in the Martian Atmosphere. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(8):564-571. (In Russ.) https://doi.org/10.17587/mau.18.564-571

Views: 424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)