Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

A System for an Automatic Implementation of the Manipulative Operations by Means of the Underwater Robots

https://doi.org/10.17587/mau.18.543-549

Abstract

This paper presents the questions of development and research of the new synthesis method of a control system for the autonomous and remotely controlled underwater robots equipped with underwater multilink manipulators. This system was designed for implementation of the widely used underwater research manipulative operations in an automatic mode. Some of them are: taking soil samples and geological rocks, determination of the composition and density of the soil with special probes and drills, taking precipitation samples with the hermetically sealed soil tubes, measurements by means of the thermistor sensors in different layers of the sedimentary soil. A control system based on the proposed method was developed. In an automatic mode, this system determines location of the bottom surface in relation to the underwater robot by means of the onboard multi-beam hydroacoustic sonar. During a robot's immersion, the developed system evaluates the complexity of the bottom relief in the working area and takes decisions on the suitability of the said relief for a trouble-free implementation of the specified manipulative tasks. Also, the proposed system determines a robot's spatial orientation and the position for the most efficient and safe manipulation operations. The algorithm for formation of the spatial trajectories of the multilink underwater manipulator's working tools was proposed. These trajectories are formed with account of the borders of the manipulator's workspace, where a sampling device can be oriented perpendicular to the bottom surface. This algorithm uses information about the continuously updated model of the bottom surface. The experimental tests of the synthesized control system were done in a deep-sea expedition for research of its operability and functioning features. The experiment results proved the efficiency and simplicity of a practical realization of the proposed system.

About the Authors

V. F. Filaretov
Institute of Automation and Control Processes; Far Eastern Federal University
Russian Federation


A. Yu. Konoplin
Institute of Marine Technology Problems, FEB RAS; Far Eastern Federal University
Russian Federation


N. Yu. Konoplin
Institute of Marine Technology Problems, FEB RAS; Far Eastern Federal University
Russian Federation


References

1. Farivarnejad H., Moosavian S. Multiple impedance control for object manipulation by a dual arm underwater vehicle-manipulator system // Ocean Engineering. 2014. P. 82-98.

2. Simetti E., Casalino G. Whole body control of a dual arm underwater vehicle manipulator system // Annual Reviews in Control 40. 2015. P. 191-200.

3. Marani G., Choi S. K., Yuh J. Underwater autonomous manipulation for intervention missions AUVs // Ocean Engineering. 2009. Vol. 36, N. 1. P. 15-23.

4. Филаретов В. Ф., Юхимец Д. А. Особенности синтеза высокоточных систем управления скоростным движением и стабилизацией подводных аппаратов в пространстве. Владивосток: Дальнаука, 2016. 400 с.

5. Scherbatyuk A., Dubrovin F. Development of Algorithms for an Autonomous Underwater Vehicle Navigation with a Single Mobile Beacon: The Results of Simulations and Marine Trials // Proc. of the ЮШШ International Conference on Integrated Navigation Systems, Saint Petersburg, Russia. 2015. P. 144-152.

6. Boreyko A., Scherbatyuk A., Moun S. Precise UUV positioning based on images processing for underwater construction inspection // Proc. of the ISOPE Pacific / Asia Offshore Mechanics Symposium, Bangkok, Thailand. 2008. P. 14-20.

7. Filaretov V. F., Konoplin A.Yu. System of Automatic Stabilization of Underwater Vehicle in Hang Mode with Working Multi-link Manipulator // Intern. IEEE Conf. on Computer, Control, Informatics and Its Applications. Bandung, Indonesia. 2015. P. 132-137.

8. Филаретов В. Ф., Коноплин А. Ю. Система автоматической стабилизации подводного аппаpата в pежиме зависания при pаботающем многозвенном манипуляторе. Часть 1 // Мехатроника, автоматизация, управление. 2014. № 6. С. 53-56.

9. Филаретов В. Ф., Коноплин А. Ю. Система автоматической стабилизации подводного аппарата в pежиме зависания щи pаботающем многозвенном манипуляторе. Часть 2 // Мехатроника, автоматизация, управление. 2014. № 7. С. 29-34.

10. McLain T. W., Rock S. M., Lee M. J. Experiments in the coordinated control of an underwater arm/vehicle system // Autonomous Robots. 1996. Vol. 3, N. 2-3. P. 213-232.

11. Mohan S. Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System // Modelling and Simulation in Engineering. Vol. 2013, 2013, Article ID 839046. 13 pages. URL: http://dx.doi.org/10.1155/2013/839046.

12. Filaretov V. F., Konoplin A. Yu. System of Automatically Correction of Program Trajectory of Motion of Multilink Manipulator Installed on Underwater Vehicle // Procedia Engineering. 2015. Vol. 100. P. 1441-1449.

13. Faria R. O., Kucharczak F., Freitas G. M., Leite A. C., Lizarralde F., Galassi M., From P. J. A Methodology for Autonomous Robotic Manipulation of Valves Using Visual Sensing // 2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production. Brazil, IFAC-Papers OnLine. 2015. Vol. 48, Iss. 6. P. 221-228.

14. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1973. 832 с.

15. Ферстер Э., Ренц Б. Методы корреляционного и регрессионного анализа. М.: Финансы и статистика, 1983. 304 с.

16. Мальцев А. И. Основы линейной алгебры. М.: Наука, 1970. 400 c.


Review

For citations:


Filaretov V.F., Konoplin A.Yu., Konoplin N.Yu. A System for an Automatic Implementation of the Manipulative Operations by Means of the Underwater Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(8):543-549. (In Russ.) https://doi.org/10.17587/mau.18.543-549

Views: 637


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)