Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Stabilization of a Flexible Inverted Pendulum with the Hysteretic Properties

https://doi.org/10.17587/mau.18.516-525

Abstract

As is known, the problem of the inverted pendulum plays the central role in the control theory. In particular, the problem of the inverted pendulum (as a test model) presents many challenging problems to the control designs. Because of their nonlinear nature, the pendulums have preserved their usefulness and now they are used to illustrate many of the ideas emerging in the field of a nonlinear control. Typical examples of that are the feedback stabilization, variable structure control, passivitybased control, back-stepping and forwarding, nonlinear observers, friction compensation, and nonlinear model reduction. The challenges of the control made the inverted pendulum systems a classic tool for the control laboratories. It should also be pointed out that the problem of stabilization of such a system is a classical problem of the dynamics and control theory. Moreover, the model of the inverted pendulum is widely used as a standard for testing of the control algorithms (for PID controllers, neural networks, fuzzy control, etc.). In this paper, the authors investigate the elastic inverted pendulum with a hysteretic nonlinearity (a backlash) in the suspension point. Namely, the problems of stabilization and optimization of such a system are considered. The algorithm, which ensures an effective procedure for finding of the optimal parameters, is presented and applied to the considered system. The results of the numerical simulations, namely the phase portraits and the dynamics of Lyapunov function, are also presented and discussed.

About the Authors

M. E. Semenov
Voronezh State University
Russian Federation


M. G. Matveev
Voronezh State University
Russian Federation


G. N. Lebedev
Moscow Aviation Institute (National Research University)
Russian Federation


A. M. Solovyev
Voronezh State University
Russian Federation


References

1. Stephenson A. On an induced stability // Phil. Mag. 15, 233 (1908).

2. Капица П. Л. Маятник с вибрирующим подвесом // УФН. 1951. № 44. С. 7-20.

3. Капица П. Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // ЖЭТФ. 1951. № 21. C. 588-597.

4. Черноусько Ф. Л., Акуленко Л. Д., Соколов Б. Н. Управление колебаниями. М.: Наука, 1980. 383 с.

5. Решмин С. А., Черноусько Ф. Л. Оптимальное по быстродействию управление перевернутым маятником в форме синтеза // Известия РАН. Теория и системы управления. 2006. № 3. С. 51-62.

6. Матвеев М. Г., Семенов М. Е., Шевлякова Д. В., Канищева О. И. Зоны устойчивости и периодические решения перевернутого маятника с гистерезисным управлением // Мехатроника, автоматизация, управление. 2012. № 11. С. 8-14.

7. Mikhail E. Semenov, Andrey M. Solovyov, Peter A. Meleshenko Elastic inverted pendulum with backlash in suspension: stabilization problem // Nonlinear Dynamics. 2015. Vol. 82. P. 677-688.

8. Semenov M. E., Meleshenko P. A., Solovyov A. M., Semenov A. M. Hysteretic Nonlinearity in Inverted Pendulum Problem // Springer Proceedings in Physics. Structural Nonlinear Dynamics and Diagnosis. 2015. Vol. 168. P. 463-506.

9. Chao Xu, Xin Yu. Mathematical model of elastic inverted pendulum control system // Journal of Control Theory and Applications. 2004. N. 3. P. 281-282.

10. Elmer P. Dadios, Patrick S. Fernandez, and David J. Williams Genetic Algorithm On Line Controller for the Flexible Inverted Pendulum Problem // Journal of Advanced Computational Intelligence and Intelligent Informatics. 2006. Vol. 10. N. 2.

11. Tang Jiali, Ren Gexue. Modeling and Simulation of a Flexible Inverted Pendulum System // Tsinghua Science and Technology. 2009. Vol. 14. N. S2.

12. Zheng-Hua Luo, Bao-Zhu Guo. Shear Force Feedback Control of a Single-Link Flexible Robot with a Revolute Joint // IEEE Transaction On Automatic Control. 1997. Vol. 42. N. 1.

13. Mohsen Dadfarnia, Nader Jalili, Bin Xian, Darren M. Dawson. A Lyapunov-Based Piezoelectric Controller for Flexible Cartesian Robot Manipulators // Journal of Dynamic Systems, Measurement, and Control. 2004. Vol. 126/347.

14. Красносельский М. А., Покровский А. В. Системы с гистерезисом. М.: Наука, 1983.

15. Годунов С. К., Рябенький В. С. Разностные схемы. М.: Наука, 1977.

16. Аттетков А. В., Галкин С. В., Зарубин В. С. Методы оптимизации. М.: Изд. МГТУ им. Н. Э. Баумана, 2003.


Review

For citations:


Semenov M.E., Matveev M.G., Lebedev G.N., Solovyev A.M. Stabilization of a Flexible Inverted Pendulum with the Hysteretic Properties. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(8):516-525. (In Russ.) https://doi.org/10.17587/mau.18.516-525

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)