Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Vacuum Control in the Surface Attaching Devices of the Mobile Robots during their Movement under the Aerodynamic Attachment Force

https://doi.org/ 10.17587/mau.18.447-452

Abstract

During the movement of the horizon mobile robots over different complex ferromagnetic and non-ferromagnetic surfaces, like walls, ceilings or slopes of various angles, their contacts with the surfaces can be realized by the attaching devices, which ensure an aerodynamic attachment force due to creation of vacuum. In industrial robotics such devices are designed for grasping objects with manipulators on the assembly lines. In the mobile robotics such devices are suitable for creation of an attachment force for the robots. The control system provides an aerodynamic attachment force due to control of the pressure level inside the vacuum area. This ensures adaptation for the mobile robots moving over the surfaces with different quality parameters. This paper describes creation of vacuum with a centrifugal pump and a turbine. It also presents an attachment device based on a centrifugal pump or a turbine, which can create an aerodynamic attachment force for movement of a mobile robot over the sloped surfaces. The air pressure inside the turbine depends on the shape of the blades, the air density and the circumferential speed of the blades. The air pressure created by the centrifugal pump or the turbine is proportional to the blades' rotary speed squared. The dependence of the air pressure on the air flow is obtained. This ensures calculation of the attachment force for the control system of a mobile robot. Simultaneous solving of the equations presented in this paper for the air pressure and the air flow provides an opportunity to obtain the operating modes for different types of the vacuum devices based on a centrifugal pump or a turbine. A possibility of the aerodynamic attachment force control by varying of the gap between the mobile robot and the surface is analyzed. Various parameters of air, such as density, average velocity and flow rate, are discussed. Creation of vacuum inside the vacuum area is considered. The experimental results concerning the pressure control, the attachment force and vacuum creation are presented.

About the Authors

V. G. Gradetsky
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


M. M. Knyazkov
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


L. N. Kravchuk
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


A. A Kriukova
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


E. A. Semenov
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


A. N. Sukhanov
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


V. G. Chashchukhin
Laboratory of Robotics and Mechatronics, Institute for Problems in Mechanics of the Russian Academy of Sciences
Russian Federation


References

1. Краснослободцев В. Я., Скворцов В. Ю. Адаптивные пневмовакуумные захваты и опоры роботов. С.-Петербург: Техн. Университет, 1996. 100 с.

2. Системы очувствления и адаптивные промышленные роботы / Под ред. Е. П. Попова. М.: Машиностроение, 1985. 256 с.

3. Фу Г., Гонсалес Р., Ли К. Робототехника: Пер. с англ. М.: Мир, 1989. 620 с.

4. Черноусько Ф. Л., Болотник Н. Н., Градецкий В. Г. Манипуляционные роботы. Динамика, управление, оптимизация. М.: Наука, 1989. 363 с.

5. Градецкий В. Г., Князьков М. М., Кравчук Л. Н., Самохвалов Г. В., Чащухин В. Г. Устройство для промывки гладких поверхностей. Патент № 132327 от 27.03.2013.

6. Даринцев О. В., Мигранов А. Б. Автономное вакуумное захватное устройство микроробота. Патент RU 2266810 C1, № 36, 2005 г.

7. Барабанов Г. П., Богданов С. В., Барабанов В. Г. Очувствленный вакуумный захват. Патент RU 2283751 C1, Бюл. № 26, 2005 г.

8. Сысоев С. Н., Кузнецов Р. В., Пронин А. В., Александров И. В., Пасечник М. А. Вакуумный захватный корректирующий модуль. Патент RU 2431561 C2. Бюл. № 29, 2011 г.

9. Longo D., Muscato G. Adhesion techniques for climbing robots: state of the art and experimental consideration // Proc. of11 Intern. Conf. on Climbing and Walking Robots (CLAWAR-2008), 08-10 September 2008, Coimbra, Portugal.

10. Luk B., Collie A., Billinngsley J. Robug II: An intelligent wall climbing robot // Proc. IEEE Int. Conf. Robotics and Automation. 1991. Vol. 3 P. 2342-2347.

11. Schmidt D., Berns K., Ohr J. Analysis of sliding suction cups for negative presure adhesion of a robot climbing on concrete walls // Adaptive Mobile Robotics. Proc. of the 15th Int. Conf. on Climbing and Walking Robots (CLAWAR-2012), 23-26 July 2012, Baltimore, USA. P. 813-820.

12. Illingworth L., Reinfeld D. Vortex attractor for planar and non-planar surfaces. U. S.A. Patent 6.619.922, Sept. 16. 2003.

13. Градецкий В. Г. Динамические процессы в миниатюрных мобильных роботах с вакуумным контактом к поверхностям перемещения // Вестник Нижегородского университета им. Н. И. Лобачевского. 2011. № 4. Ч. 2. С. 104-105.

14. Градецкий В. Г., Фомин Л. Ф. Динамические процессы в системах создания вакуума миниатюрных мобильных роботов // Мехатроника, автоматизация, управление. 2013. № 9. С. 10-14.

15. Каталог продукции компании Camozzi. URL: www.camozzi.com (дата обращения: 19.10.2016).

16. Тачков А. А., Калиниченко С. В., Малыхин А. Ю. Моделирование и оценка эффективности системы удержания малогабаритного автономногоробота вертикального перемещения с вакуумными захватами // Мехатроника, автоматизация, управление. 2016. Т. 17. № 3. С. 178-186.

17. Градецкий В. Г., Князьков М. М., Фомин Л. Ф., Чащухин В. Г. Механика миниатюрных роботов. М.: Наука, 2010. 271 с.

18. Градецкий В. Г., Вешников В. Б., Калиниченко С. В., Кравчук Л. Н. Управляемое движение мобильных роботов по произвольно ориентированным в пространстве поверхностям. М.: Наука, 2001. 359 с.

19. Apostolescu T. C., Udrea C., Duminica D., Iorasco C., Bogato L., Laurentiu A. C. Development of a climbing robot with vacuum attachment cups // Proc. of International Conference MECHITECH'11, September 22-23. 2011. Bucharest. P. 258-267.

20. Watanabe M., Tsukagoshi H. Snail inspired climbing robot using fluid adhesion to travel on rough concrete walls and ceilings // Advanced in cooperative robotics. Proc. of CLAWAR-2016, 12-14 September 2016, London, UK. P. 79-87.

21. Yamaguchi T., Go T., Yamada Y., Nakamura T. Development of negative pressure suction mechanism in amnidirectional wall-climbing robot for inspection of airplanes // Advanced in cooperative robotics. Proceedings of CLAWAR - 2016, 12-14 September 2016, London, UK. P. 106-114.

22. Семидуберский М. С. Насосы, компрессоры, вентиляторы. М.: Высшая школа, 1966. 262 с.


Review

For citations:


Gradetsky V.G., Knyazkov M.M., Kravchuk L.N., Kriukova A.A., Semenov E.A., Sukhanov A.N., Chashchukhin V.G. Vacuum Control in the Surface Attaching Devices of the Mobile Robots during their Movement under the Aerodynamic Attachment Force. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(7):447-452. (In Russ.) https://doi.org/ 10.17587/mau.18.447-452

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)