Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Investigation of the Sensor Stabilization System for Non-Contact Scanning Profilometer Based on the Optical Tunneling Method

Abstract

Non-contact profilometer often use scanning method to obtain data about the shape of the surface of the body. In this paper, present investigation and modeling of stabilization gap for non-contact optical profilometer based on the optical tunneling effect (OTE) in the dynamic mode based on the characteristics of its constituent blocks. In operation of such a scanning optical profilometer transducer moves along the test surface, without touching it. To ensure a correct reading of the measurement results is necessary to maintain the gap between the optical module and the test approach permanent body with high accuracy. For this proposed use of tracking feedback system that provides the stabilization of nanometer gap. This allows you to receive signals, depending on the topography of the surface, and on this basis to build a height map. The system of non-contact profilometer stabilization gap comprises a converter approach based OTE, photodetector, the convertor " current - voltage ", the height of the surface of the sensor and a piezomotor. In the process of stabilizing the converter system converts approximations gap d changes in the optical radiation Pfd, and formed a feedback voltage Uos_d. According to the difference of voltage Uos_d and master voltage Ud0, increments are obtained voltage DUd, which provides piezomotor control applied to traffic proximity transducer that provides stabilization of the gap d at a given initial level d0. System of this problems solve the task of selection circuitry, which managed to implement the necessary requirements for the quality of regulation and the task of building a regulator, by compensating unwanted temporal properties of the contour measurement, which is based on dynamic links with large gains and small time constants.

About the Authors

V. I. Busurin
Moscow Aviation Institute (National Research University)
Russian Federation


P. S. Kudryavtsev
Moscow Aviation Institute (National Research University)
Russian Federation


Zhe Liu
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Рыжевич А. А., Солоневич С. В., Хило Н. А., Лепарский В. Е. Лазерный профилометр для определения качества поверхности // Матер. 9-й Междунар. конф. "Взаимодействие излучений с твердым телом", 20-22 сентября Минск, 2011 г. С. 448-450.

2. Nano-Optics and Near-Field Optical Microscopy / Ed. by Zayats A., Richards D. Boston: Artech House, 2009. 379 p.

3. Shubeita G. T., Sekatskii S. K., Riedo B., Dietler G. Scanning Near-Field Optical Microscopy based on the Heterodyne Phase-Controlled Oscillator Method // Journal of Applied Physics. 2000. Vol. 88, N. 5. P. 2921-2927.

4. Handbook of Nano-Optics and Nanophotonics. M. Springer, 2013. 1068 p.

5. Бусурин В. И., Лю Чжэ, Ахламов П. С., Беpдюгин Н. А. Исследование бесконтактного оптического пpеобpазователя пpиближения мехатpонной системы стабилизации зазоpа сканиpующего пpофилометpа // Мехатроника, автоматизация, управление. 2015. Т. 16. № 1. С. 43-47.

6. Линник Ю. В. Метод наименьших квадратов и основы математическо-статистической теории обработки наблюдений. М.: ФИЗМАТЛИТ, 1958. 338 с.

7. Шуберт Ф. Светодиоды. М.: ФИЗМАТЛИТ, 2008. 496 с.

8. Операционный усилитель OУ-SL2541B. URL: http:// www.datasheetlib.com/datasheet/1270687/sl2541b_plessey-semi-conductors.html (дата обращения 28.01.2017).

9. Операционный усилитель ОУ-154УД4, ОУ-140УД6. URL: http://www.chipinfo.ru, (дата обращения 28.01.2017).

10. Бобцов А. А., Бойков В. И., Быстров С. В., Григорьев В. В. Исполнительные устройства и системы для микроперемещений. СПб.: СПБ ГУ ИТМО, 2011. 134 с.

11. Пьезодвигатель "Piezolegs". URL: http://www.piezomotor.com, (дата обращения 28.01.2017).

12. Бесконтактная инкрементальная энкодерная система "Tonic". URL: http://www.renishaw.ru (дата обращения 28.01.2017).

13. Геращенко Е. И., Геращенко С. М. Метод разделения движений и оптимизация нелинейных систем. М.: Наука, 1975. 296 с.

14. Черных И. В. Simulink: среда создания инженерных приложений / Под ред. В. Г. Потемкина М.: Диалог-МИФИ, 2004. 496 с.

15. D'Errico J. Numerical Differentiation: Function Jaco-bianest. URL: http://www.mathworks.com (дата обращения 28.01.2017).


Review

For citations:


Busurin V.I., Kudryavtsev P.S., Liu Zh. Investigation of the Sensor Stabilization System for Non-Contact Scanning Profilometer Based on the Optical Tunneling Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(2):80-85. (In Russ.)

Views: 344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)