Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Sensitive Algorithms for Identifying the Degree of Fault Growth in Sucker Rod Pumping Units

https://doi.org/10.17587/mau.18.91-102

Abstract

The authors demonstrate that in order to increase the oil production at a late stage of operation of oilfields, a timely identification of the technical state of the sucker rod pumping unit (SRPU) is required. They point out that emergence of a fault in SRPU is accompanied by a random additive noise, which is superimposed on the signal, coming from the force transducer. It was established experimentally that by calculation of the characteristics of the noise, inextricable from a noisy signal, it was possible to identify the initial period of origin and determine the degrees of fault development in SRPU. It was discovered that the noise probability density function could be used as an indicator for determination of the degree of such SRPU faults as plunger sticking, discharge valve leakage (PVL) and discharge pipes leakage, suction valve leakage (SVL), pump pipes leakage, and slackening leading to sucker rod breakage. The authors developed algorithms for calculation of the noise probability density function, its maximum and the coordinates of the inflection points, and proposed algorithms for identifying the degree of SRPU fault by means of the noise probability density function, and the relevant analysis was carried out. A bank was established, comprising a bank of the graphic images and a databank of the discrete values of the noise probability density function corresponding to various degrees of faults.

About the Authors

T. A. Aliev
1nstitute of Control Systems of the Azerbaijan NAS
Russian Federation


N. F. Musayeva
Azerbaijan University of Architecture and Construction
Russian Federation


M. T. Suleymanova
1nstitute of Control Systems of the Azerbaijan NAS
Russian Federation


B. I. Gazizade
1nstitute of Control Systems of the Azerbaijan NAS
Russian Federation


References

1. Максимов В. М. О современном состоянии нефтедобычи, коэффициенте извлечения нефти и методах увеличения нефтеотдачи // Бурение и нефть. 2011. № 2. URL: http:// burneft.ru/archive/issues/2011-02/6

2. Ибатуллин Р. Р., Ибрагимов Н. Г., Тахаутдинов Ш. Ф., Хисамов Р. С. Увеличение нефтеотдачи на поздней стадии разработки месторождений. М.: Недра, 2004. 292 с.

3. Лысенко В. Д., Грайфер В. И. Рациональная разработка нефтяных месторождений. М.: Недра, 2005. 607 с.

4. Маркетинговое исследование рынка установок штанговых глубинных насосов (УШ-ГН). Аналитический отчет. Research. Techart. 2010: URL: http://www.techart.ru/files/research/ walking-beam-pumping-unit.pdf.

5. Алиев Т. А., Нусратов О. Г., Гулуев Г. А., Рзаев Ас. Г., Пашаев Ф. Г., Ризванов М. Г., Керимов А. Б. Алгоритмы диагностики неисправностей штанговых глубинно-насосных установок // Мехатроника, автоматизация, управление. 2015. Т. 16. № 5. С. 314-320.

6. Алиев Т. А., Нусратов О. Г., Рзаев А. Г., Гулуев Г. А., Пашаев Ф. Г. Система контроля, диагностики и робастного управления закачкой воды в пласт // VI ALL-Ukranian Scientific-Practical conference "Informatics and Systems sciences", Poltava. 2015. P. 16-19.

7. Aliev T. A., Musaeva N. F., Sattarova U. E. The technology of forming the normalized correlation matrices of the matrix equations of multidimensional stochastic objects // Journal of Automation and Information Sciences. 2013. Vol. 45 (1). N. 6. P. 1-15.

8. Aliev T. A., Guluyev G. A., Pashayev F. H., Abbasov A., Rzayev As. H. Position-Binary and Spectral indicators of micro changes in the technical states of control objects // Automatic Control and Computer Sciences. 2009. Vol. 49. N. 3. С. 156-165.

9. Aliev T. A., Guluyev G. A., Pashayev F. H., Rzayev As. H. Correlation indicators of micro-changes in technical states of control objects // Cybernetics and Systems Analysis, Springer New York. 2009. Vol. 45. N. 4. С. 655-662.

10. Aliev T. A., Musaeva N. F., Guluyev G. A., Sattarova U. E., Rzaeva N. E. System of Monitoring of Period of Hidden Transition of Compressor Station to Emergency State // Journal of Automation and Information Sciences. 2011. Vol. 43 (11). N. 6. С. 61-81.

11. Musaeva N. F. Technology for determining the magnitude of robustness as an estimate of statistical characteristic of noisy signal // Automatic Control and Computer Sciences. 2005. Vol. 39. N. 5. P. 53-62.

12. Musaeva N. F. Robust correlation coefficients as initial data for solving a problem of confluent analysis // Automatic Control and Computer Sciences. 2007. V. 41. N. 2. P. 76-87.

13. Aliev T. A., Musaeva N. F., Suleymano-va M. T., Gazizade B. I. Analytic representation of the density function of normal distribution of noise // Journal of Automation and Information Sciences. 2015. Vol. 4 (8). N. 4. P. 24-40.

14. Вентцель Е. С. Теория вероятностей. М.: Наука, 1969. 576 с.

15. Техническая кибернетика. Книга 2 / Под ред. Солодовникова В. В. М.: Машиностроение, 1967. 682 с.


Review

For citations:


Aliev T.A., Musayeva N.F., Suleymanova M.T., Gazizade B.I. Sensitive Algorithms for Identifying the Degree of Fault Growth in Sucker Rod Pumping Units. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(2):94-102. (In Russ.) https://doi.org/10.17587/mau.18.91-102

Views: 331


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)