Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Concerning Presentation of a Route for a Mobile Robot Based on Visual Guides

https://doi.org/10.17587/mau.18.81-89

Abstract

One of the widespread approaches to the issues of control in the group robotics is application of the social behavior models in the groups of robots. In this paper the author proposes to use this approach to fulfill the tasks of foraging. As a role model a Formicidae ant is proposed. This task is considered as a combination of three stages: finding food, returning to the ant hill and repeating the way to the place where food was found. It was proven that in order to come back home and repeatedly walk the way the Formicidae ants were navigated predominantly by the visual means using vector navigation (path integration) and landmark-guidance mechanisms. The basis of the proposed method is formed by the principles of memorizing the way by the visual landmarks and fuzzy control. The model of describing the way is introduced to the robot, which can define colors of the landmarks and approximately sense the direction to the landmark in respect to itself. A pattern for formation of a succinct way description was created, with the help of which the scout robot memorizes the way to the "food". certain regulations were developed, which let the follower robot transfer from the description of the route to the actions of its reproduction and in many ways copy an ant's behavior. The actions are presented as elementary behavioral procedures, and each behavioral procedure is realized as a finite state automata. The results of the simulation modeling, which was conducted with the help of the framework of ROS based modeling system, are presented. Experiments were conducted in polygons with barriers and without them, with regular and irregular placing of the landmarks. As a quality criterion for the proposed method the author offers to consider a successful passing of the route by the follower robot, and this indicator in different series of experiments varies from 92 up to 98 %. The proposed method does not require robot's great computation capacity and advanced sensory abilities. The developed method can also be applied to the tasks of reconnaissance and patrolling.

About the Author

I. P. Karpova
Higher School of Economics (HSE); Moscow Institute of Physics and Technology
Russian Federation


References

1. Карпов В. Э. Модели социального поведения в групповой робототехнике // Управление большими системами. Вып. 59. М.: ИПУ РАН, 2016. C. 165-232.

2. Кулинич А. А. Модель командного поведения агентов (роботов): когнитивный подход // Управление большими системами. 2014. Вып. 5. C. 174-196.

3. Thrun S. Simultaneous localization and mapping (Review) // Springer Tracts in Advanced Robotics. 2008. Vol. 38. P. 13-41.

4. Moller R., Vardy A. Local visual homing by matched-filter descent in image distances // Biological Cybernetics. 2006. 95 (5). P. 413-430. doi: 10.1007/s00422-006-0095-3.

5. Baddeley B., Graham P., Husbands P., Philippides A. A model of ant route navigation driven by scene familiarity // PLoS Computational Biology. January 2012. Vol. 8, Iss. 1. Article number e1002336.

6. Kim P., Kurabayashi D. Efficient formation of pheromone potential field by filtering interaction // Journal of Robotics and Mechatronics. 2012. Vol. 24, Iss. 4. P. 561-567.

7. Hoff N., Wood R., Nagpal R. Distributed colony-level algorithm switching for robot swarm foraging // Springer Distributed Autonomous Robotic Systems. 2013. P. 417-430.

8. Lee J.-H., Ahn C. W., An J. A honey bee swarm-inspired cooperation algorithm for foraging swarm robots: an empirical analysis // 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, Novotel, Wollongong, Australia. 2013. P. 489-493.

9. Meng Z., Zou B., Zeng Y. Considering direct interaction of artificial ant colony foraging simulation and animation // J. Exp. Theor. Artif. Intell. 2012. 24 (1). P. 95-107.

10. Zedadraa O., Seridib H., Jouandeauc N., Fortinod G. A Cooperative Switching Algorithm for Multi-Agent Foraging // Engineering Applications of Artificial Intelligence. April 2016. Vol. 50. P. 302-319.

11. Длусский Г. М. Муравьи рода Формика. М.: Наука, 1967.

12. с.

13. Захаров А. А. Муравей, семья, колония. М.: Наука, 1978.

14. с.

15. Калуцкая А. П., Тарасов В. Б. Моделирование взаимодействия робота с внешней средой на основе пространственных логик и распространения ограничений // Программные продукты и системы. 2010. № 2. C. 174-178.

16. Карпов В. Э. Частные механизмы лидерства и самосознания в групповой робототехнике // Тр. XIII национ. конф. по искусственному интеллекту с международным участием КИИ-2012 (16-20 октября 2012 г., Белгород). Т. 3. Изд-во БГТУ, 2012. C. 275-283.

17. Muller M., Wehner R. Path integration in desert ants, Cataglyphis fortis // Proc. of the National Academy of Sciences of USA. 85: 5287-5290.

18. Wehner R. The architecture of the desert ant's navigational toolkit (Hymenoptera: Formicidae) // Myrmecol News 12. Vienna. September 2009. P. 85-96.

19. Цетлин М. Л. Исследования по теории автоматов и моделированию биологических систем. М.: Наука,1969. 316 с.

20. Robot Operating System. URL: http://www.willowgarage.com/ pages/software/ros-platform

21. Тарасов В. Б. Гранулярные структуры измерений в интеллектуальных средах: васильевские и белнаповские сенсоры и модели их взаимодействия // Информационно-измерительные и управляющие системы. 2013. Т. 11. № 5. C. 65-74.

22. Karpov V. E. Emotions and Temperament of Robots: Behavioral Aspects // Journal of Computer and Systems Sciences International. 2014. Vol. 53, N. 5. P. 743-760.


Review

For citations:


Karpova I.P. Concerning Presentation of a Route for a Mobile Robot Based on Visual Guides. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(2):81-89. (In Russ.) https://doi.org/10.17587/mau.18.81-89

Views: 457


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)