Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Робастное управление объектом сэкстремальной характеристикой в условиях неопределенности

https://doi.org/10.17587/mau.18.75-80

Abstract

Extreme control objects are distinguished by insufficiency of information on their outputs. In order to obtain information during the control process a special search should be organized in the form of the multiple trial steps, with consideration of the non-monotonous (extreme) form of the static characteristic. An example of this is any heating object, an aircraft, which due to fuel burning out and weight loss has to limit its cruising speed in order to increase its flight range, an optimal dampening task of a second-order tracking system, etc. The article considers the robust control for a nondetermined object with an extreme static characteristic by means of an extreme control system with an extremum storing mechanism, and stabilization systems based on the adaptive fuzzy controllers, and with the use of an object with a pronounced minimum of its static characteristic. The thermal object, operating in the conditions of uncertainty, requires development of a nonlinear approximation circuit (adaptive fuzzy controller), containing a fuzzificatior, a linear artificial neuron with an algorithmic feedback, and functions activation unit. Fuzzificator term set contains four linear terms arranged within the interval of 0-1. Deviation of a temperature from its optimal value is used as a linguistic variable. The membership degrees of the activated membership functions are multiplied with the synapses of the feedback-driven neuron. Correction of the synapses is implemented with the help of the adaptation algorithm, which gives its adaptive properties to the temperature controller in relation to the external disturbances (for example, variable calorific value). The regulatory action by means of the functions activation unit controls operation of the air or fuel regulatory mechanism. Application of the developed adaptive fuzzy temperature controllers allows us to ensure maintaining of an exact temperature of a verbal object within the range of 3 % of the given value.

About the Authors

Yu. N. Khizhnyakov
Perm National Research Polytechnic University
Russian Federation


A. A. Yuzhakov
Perm National Research Polytechnic University
Russian Federation


References

1. Растригин Л. А. Системы экстремального управления. М.: Наука, Главная редакция физико-математической литературы, 1974. 632 с.

2. Техническая кибернетика. Теория автоматического регулирования. Кн. 3. Ч. 11. Теория нестационарных, нелинейных и самонастраивающихся автоматического регулирования. М.: Изд-во Машиностроение, 1969. 367 с.

3. Либерзон Л. М., Родов А. Б. Системы экстремального регулирования. М.: Энергия, 1965. 120 с.

4. Гостев В. И. Проектирование нечетких регуляторов для систем автоматического управления. СПб.: БХВ-Петербург, 2011. 416 с.

5. Хижняков Ю. Н. Алгоритмы нечеткого, нейронного и нейронечеткого управления в системах реального времени: учеб. пособие. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2013. 156 с.

6. Хижняков Ю. Н. Нечеткое, нейронное и гибридное управление: учеб. пособие. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та, 2013. 303 с.

7. Леготкина Т. С., Хижняков Ю. Н. Модификация метода центроида // Вестник Ижевского государственного технического университета. 2011. № 1. С. 122-125.

8. Синяков А. Н., Шаймарданов Ф. А. Системы автоматического управления ЛА и их силовыми установками. М.: Машиностроение, 1991. 320 с.


Review

For citations:


Khizhnyakov Yu.N., Yuzhakov A.A. . Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(2):75-80. (In Russ.) https://doi.org/10.17587/mau.18.75-80

Views: 444


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)