Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Inverse Kinematic Analysis for Control of Human-Like Ambidextrous Robotic Hands

https://doi.org/10.17587/mau/18.34-40

Abstract

This paper discusses the design of two human-like robotic hands. The kinematics of this design was introduced to offer a more generic, speedy, and precise solution for a wide range of robotic applications. This research is focused on integration of the control of both arms and hands as one entity. A solution involving several manipulators requires coordination between them. In order to arrange a stable grasp, the angle of inclination of the predefined hand orientation normal was used with the angle of inclination of the object's center of gravity vector. The center of the gravity vector was calculated using the image intensity of the object splines. The splines of the predefined hand contact points were adapted to the object 3D model splines. The maximal and minimal values of the joints' angle ranges were measured to define the fingers' workspace. Gestures were classified as prismatic and circular, regardless ofthe grasping power or precision, while the circular grasping implied a strong correlation among the finger joints. The human-like hands were intended for many applications involving a specific series of tasks like artificial limbs of the handicapped people, they were also meant for the fire fighters, production workers, surgeons, and for use as a research platform.

About the Authors

М. А. Al Akkad
M. T. Kalashnikov Izhevsk State Technical University
Russian Federation


I. V. Abramov
M. T. Kalashnikov Izhevsk State Technical University
Russian Federation


V. V. Khvorenkov
M. T. Kalashnikov Izhevsk State Technical University
Russian Federation


References

1. Li Y., Pollard N. S. A shape matching algorithm for synthesizing humanlike enveloping grasp // IEEE-RAS International Conference on Humanoid Robots: сб. ст. Междунар. конференции (Цукуба, 2005 г.). Цукуба, 2005. С. 442-449.

2. Liu J., Zhang Y. Mapping human hand motion to dexterous robotic hand // ROBIO - IEEE International Conference on Robotics and Biomimetics: сб. ст. Междунар. конференции (Санья, 2007 г.). Санья, 2007. С. 829-834.

3. Goldfeder C., Allen P., Lackner C., Pelossof R. Grasp planning via decomposition // IEEE Intl. Conf. on Robotics and Automation: сб. ст. Междунар. конференции (Рим, 2007 г.). Рим, 2007.

4. Tsoli A., Jenkins O. C. 2D subspaces for user-driven robot grasping // Robotics, Science and Systems Conference: Workshop on Robot Manipulation: сб. ст. Междунар. конференции. США, 2007.

5. Liu H., Meusel P., Hirzinger G., Jin M., Liu Y., Xie Z. The Modular Multisensory DLR-HIT-Hand: Hardware and Software Architecture // IEEE/ASME Transactions on mechatronics: сб. ст. Междунар. конференции. 2008. Т. 13, № 4. С. 461-469.

6. Rothling F., Haschke R., Steil J., Ritter H. Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand // IEEE/RSJ International Conference on Intelligent Robots and Systems: сб. ст. Междунар. конференции, 2007. С. 2951-2956.

7. Al Akkad M. A. Exploiting two ambidextrous robotic arms for achieving cooperative tasks // Вестник Ижевского государственного технического университета. 2014. № 4. С. 134-139.

8. Grunwald G., Borst C., and Zollner J. Benchmarking dexterous dualarm/hand robotic manipulation // IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Performance Evaluation and Benchmarking: сб. ст. Междунар. Конференции (Ницца, 2008). Ницца, 2008.

9. Wimbock T., Ott C., Prassler E., Zollner M., Bischo R., Burgard W., Haschke R., Hagele M., Lawitzky G., Nebel B., Ploger P., Reiser U. Dual-arm manipulation // Towards Service Robots for Everyday Environments, сер. Springer Tracts in Advanced Robotics. Eds. Springer Berlin, Heidelberg, 2012. Т. 76. С. 353-366.

10. Ciocarlie M. T., Allen P. K. Hand posture subspaces for dexterous robotic grasping // The International Journal of Robotics Research. 2009. Т. 28, № 7. С. 851-867.

11. Gabiccini M., Bicchi A., Prattichizzo D., Malvezzi M. On the role of hand synergies in the optimal choice of grasping forces // Autonomous Robots. Springer. 2011. C. 235-252.

12. Gribovskaya E., Billard A. Combining dynamical systems control and programming by demonstration for teaching discrete bi-manual coordination tasks to a humanoid robot // 3 EEE/ACM International Conference on Human-Robot Interaction: сб. ст. Междунар. конференци (Амстердам, 2008). Амстердам, 2008. С. 33-40.

13. Лесков А. Г., Илларионов В. В. Математическое и полунатурное моделирование операций космических манипуляционных роботов // Пилотируемые полеты в космос: Тезисы д окл. 8-й Междунар. науч.-практич. конф. Звездный городок, 2009. С. 70-71.

14. Орлов И. А. Синтез движения манипуляционных систем для пространств со сложными связями и ограничениями: дис.. канд. физ.-мат. наук. Институт прикладной математики имени Келдыша М. В. Москва, 2013.

15. Корягин Е. В. Разработка высокоуровневой системы управления антропоморфным роботом // Нейроинформатика. 2013. Т. 7, № 1.

16. Craig J. J. Introduction_to_Robotics_Mechanics, 3rd edition, Pearson Prentice Hall, 2005.

17. Pivarciova E., Bojek P., Al Akkad M. A., Yakomovitch B. A. Automated Systems of Image Verification: монография. Gliwice, Polland: PA NOVA, 2015. С. 130-206.


Review

For citations:


Al Akkad М.А., Abramov I.V., Khvorenkov V.V. Inverse Kinematic Analysis for Control of Human-Like Ambidextrous Robotic Hands. Mekhatronika, Avtomatizatsiya, Upravlenie. 2017;18(1):34-40. (In Russ.) https://doi.org/10.17587/mau/18.34-40

Views: 395


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)