Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Mobile Robot Control System Based on a Modified 3D-Pointcloud Algorithm

https://doi.org/10.17587/mau.17.400-406

Abstract

The control system of mobile robot (functioning in buildings and structures), based on the methods of trajectories construction using a depth gauge sensor Kinect. The general approach of the work is based on the sequential execution of three phases: obstacle detection, mapping and construction barriers trajectories. Recognition guidelines robot is implemented using an SURF algorithm and FLANN library. Their combined use provides effective recognition obstacle in the near zone of the mobile robot to the required accuracy in real time. Mapping obstacles (concave shells) and the estimate of the distance to the border barriers is based on getting the so-called acceptable points. For this purpose, using the algorithm implemented Point-cloud detection of different types of obstacles in the close range of the robot. Synthesized a modified 3D-pointcloud algorithm which provides a solution to the problem of the robot move without colliding with obstacles. These algorithms can be applied to any stereo cameras and rangefinders that return colored frames and image depth, as described algorithms use data on the distance of objects from the sensor and are resistant to the visible spectrum of light (can operate in total darkness, without requiring a backlight). Built three-level robot control system in buildings and structures on the basis of a modified algorithm of 3D-pointcloud. The results of experiments confirming the effectiveness of the above approach.

About the Authors

Nguen Tuan Dung
Вьетнамская академия наук и технологий
Russian Federation


I. A. Shcherbatov
Astrakhan State Technical University
Russian Federation


O. M. Protalinskii
Astrakhan State Technical University
Russian Federation


References

1. Hwang Y., Ahuja N. Gross motion planning - a survey // ACM Computing Surveys. 1992. 24 (3). P. 219-291.

2. Cunha S., de Matos A., Pereira F. Am automatic path planning system for autonomous robotic vehicles Pereira // Proc. of International Conference on Industrial Electronics, Control, and Instrumentation (IECON '93). 1993. Vol. 3, Maui, HI, USA. P. 1442-1447.

3. Hassouna Sabry M., Alaa E. Abdel-Hakim, Aly A. Farag. PDE-based robust robotic navigation // Computer Vision and Image Processing Laboratory (CVIP), Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA. 2007. P. 10-18.

4. Juan L., Gwun O. A Comparison of SIFT, PCA-SIFT and SURF // International Journal of Image Processing (IJIP). 2009. Vol. 3, No. 4. P. 143-152.

5. Bay H., Ess A., Tuytelaars T., Van Gool L. Speeded-Up Robust Features (SURF) // Computer Vision and Image Understanding, June 2008. Vol. 110, Iss. 3. P. 346-359.

6. Ramisa A., Vasudevan S., Aldavert D., Toledo R., Lopez de Mantaras R. Evaluation of the SIFT Object Recognition Method in Mobile Robots. URL: http://www.iiia.csic.es/~mantaras/sift_eval.pdf.

7. Носков В. П., Носков А. В. Навигация мобильных роботов по дальнометрическим изображениям // Мехатроника, автоматизация, управление. 2005. № 12. С. 16-21.

8. Mojtahedzadeh R. Robot Obstacle Avoidance using the Kinect. Master of Science Thesis Stockholm, Sweden, 2011. 61 p.

9. Murphy R. Introduction to AI Robotics. MIT press, 2000. 400 p.

10. Bay H., Ess A., Tuytelaars T., Van Gool L. Path planning using lazy prm // Proc. of the IEEE International Conference on Robotics and Automation (ICRA). 1997. P. 333-338.

11. Rao N. S. V., Hareti S., Shi W., Iyengar S. Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms // Oak Ridge National Laboratory, Technical Report ORNL/TM-12410. 1993.

12. Hoff K., Culver Т., Keyser J., Lin M., Manocha D. Interactive motion planning using hardware-accelerated computation of generalized Voronoi diagrams // Proc. of the IEEE International Conference on Robotics and Automation. 2000. P. 2931-2937.

13. Zhu D., Latombe J. New heuristic algorithms for efficient hierarchical path planning // IEEE Transaction on Robotics and Automation. 1991. 1 (1). P. 9-20.

14. Hwang Y. K., Ahuja N. Potential field approach to path planning // IEEE Transaction on Robotics and Automation. 1992. 8 (1). P. 23-32.

15. Navneet Dalai, Bill Triggs. Object Detection using Histograms of Oriented Gradients. URL: http://www.webcitation.org/6DvoEuAvL.

16. Нгуен Туан Зунг, Щербатов И. А. Распознавание объектов в системе технического зрения мобильного робота: использование библиотеки FLANN и алгоритма SURF // Прикаспийский журнал управление и высокие технологии. - 2014. № 4. С. 65-76.

17. Нгуен Туан Зунг, Щербатов И. А. Совместное распознавание подвижных и неподвижных объектов в системе технического зрения робота // Мехатроника, автоматизация, управление. 2015. Т. 16, № 7. С. 464-470.

18. Shcherbatov I. A., Nguyen Tuan Dung. Speed up algorithms for obstacles detection in the robot vision system using point cloud // Creativity in Intelligent Technologies and Data Science. 2015. P. 673-683. DOI: 10.1007/978-3-319-23766-4_53.

19. Chakraborty S., Nagwani N. K., Dey L. Performance Comparison of Incremental K-means and Incremental DBSCAN Algorithmsn // International Journal of Computer Applications (0975 - 8887). August 2011. Vol. 27, No. 11. P. 14-18.

20. Рассел С. Дж., Норвиг П. Искусственный интеллект: современный подход / Пер. с англ. и ред. К. А. Птицына. М.: Вильямс, 2006. 1408 с.

21. Проталинский И. О., Елизаров Д. В., Кирилин С. А. Универсальная мобильная платформа для роботов, обслуживающих социальную и бытовую сферы // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2011. № 2. С. 49-54.


Review

For citations:


Nguen Tuan Dung , Shcherbatov I.A., Protalinskii O.M. Mobile Robot Control System Based on a Modified 3D-Pointcloud Algorithm. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(6):400-406. (In Russ.) https://doi.org/10.17587/mau.17.400-406

Views: 530


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)