Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

SLAM Technologies for the Mobile Robots: State and Prospects

https://doi.org/10.17587/mau.17.384-394

Abstract

SLAM is a modern technology of a simultaneous localization of a mobile robot in the environment of motion and mapping of the surrounding space. By using SLAM a robot determines its position (solves the problem of localization) in space and simultaneously builds a map of the environment. This is a major technology for approaching the problem of navigation of the mobile robots. Now certain algorithms are already available with the known solution for the problem of SLAM. SLAM algorithms are applied widely for control of the mobile devices moving on the roads or off roads, for control of the flying robots (autonomous robot planes, helicopters, dirigibles), and for control of the android walking robots. Of course, for each class of the mobile robots there are specific features of a concrete SLAM technology, but the main ideas remain the same. In the specified technology a robot orientates itself in relation to the known reference points, using the sensors providing information on the reference points. In the first SLAM algorithms video cameras and/or range finders were often used, and later satellite navigation sensors were used. The article presents a brief review of the popular effective solutions to the SLAM problem based on various sensor processing algorithms and using different hardware. Among them the basic SLAM methods, such as MonoSLAM, FastSLAM, VisualSLAM, INS-SLAM, and INS-GPS-SLAM are considered. Their description is presented in the same order as information about these methods appeared in literature, and in the specified row, so the subsequent methods are more improved, than the preceding ones. Now the above methods ensure a reliable navigation for the mobile robots, however, new methods appear, and research is going on, in particular, with the aim to increase the speed of the SLAM methods and develop new sensors providing information on the environment.

About the Authors

V. E. Pavlovsky
Keldysh Institute of Applied Mathematics of RAS
Russian Federation


V. V. Pavlovsky
Plekhanov Russian University of Economics
Russian Federation


References

1. URL: https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping.

2. Seren Riisgaard, Morten Rufus Bias. SLAM for Dummies. A Tutorial Approach to Simultaneous Localization and Mapping. 127 p. URL: http://ocw.mit.edu/courses/aeronautics-and-astronautics/ 16-412j-cognitive-robotics-spring-2005/projects/laslam_blas_repo.pdf.

3. Leonard J. J., Durrant-Whyte H. F. Simultaneous map building and localization for an autonomous mobile robot // Intelligent Robots and Systems' 91. Intelligence for Mechanical Systems. Proc. IROS'91. IEEE/RSJ International Workshop. 1991. P. 1442-1447. DOI: 10.1109/IROS. 1991.174711

4. Steder B., Grisetti G., Stachniss C., Burgard W. Visual SLAM for Flying Vehicles. 5 p. URL: http://ais.inforrnatik.uni-freiburg.de/ publications/papers/stder08tro.pdf.

5. Montemerlo M., Thrun S., Koller D., Wegbreit B. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem // Carnegie-Mellon University, Stanford University, Proc. of American Association for Artificial Intelligence, AAAI-02. 2002. P. 593-598.

6. Dae Нее Won, Sebum Chun, Sangkyung Sung, Young Jae Lee, Jeongho Cho, Jungmin Joo, Jungkeun Park. INS/vSLAM System Using Distributed Particle Filter // International Journal of Control, Automation, and Systems. 2010. 8 (6). P. 1232-1240. DOI: 10.1007/sl2555-010-0608-7.

7. Andrew J. Davison, Ian D. Reid, Nicholas D. Molton, Olivier Stasse. MonoSLAM: Real-Time Single Camera SLAM // IEEE Transactions On Pattern Analysis And Machine Intelligence. 2007. Vol. 29, N. 6. P. 1-16.

8. Russo L., Rosa S., Bona B., Matteucci M. A ROS Implementation of the Mono-SLAM Algorithm. 13 p. URL: http://www.slideshare.net/csandit/a-ros-implementation-of-the-monoslam-algorithm.

9. URL: https://www.google.com/atap/project-tango/

10. Герасимов В. Н., Михайлов Б. Б. Решение задачи управления движением мобильного робота при наличии динамических препятствий // Вестник МГТУ им. Н. Э. Баумана. Сер. "Приборостроение". 2012. Спец. выпуск № 6 "Робототехнические системы". С. 83-92.

11. Герасимов В. Н. Алгоритм SLAM на основе корреляционной функции // Экстремальная робототехника. Сб. докл. в всеросс. науч.-техн. конф. 2015. С. 101-106.

12. Кузнецов П. М. Система навигации робота на базе визуальной одометрии. СПб: Изд. СПбГУ, 2012. 15 с. URL: http://www.apmath.spbu.ru/ru/education/master/2012/kuznecov-prez.pdf

13. Боковой А. В. Исследование методов одновременного картирования и локализации беспилотных летательных аппаратов по видеопотоку, полученному с единственной камеры // Тр. Междунар. науч.-техн. конф. "Экстремальная робототехника". Тр. II Всеросс. семинара "Беспилотные транспортные средства с элементами искусственного интеллекта (БТС ИИ)" (2015). 2015. С. 26-33.

14. URL: http://my-it-notes.com/2013/01/slam-basis-and-links-at-open-source/.

15. URL: https://en.wikipedia.org/wiki/Kalman_filter


Review

For citations:


Pavlovsky V.E., Pavlovsky V.V. SLAM Technologies for the Mobile Robots: State and Prospects. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(6):384-394. (In Russ.) https://doi.org/10.17587/mau.17.384-394

Views: 983


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)