Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Dynamic Equations of Docking Mechanisms. Part 1. Algorithms for Mechanical Systems with Tree Structure

Abstract

High computational efficiency of spacecraft docking dynamic simulation is needed for analysis based on a great number of random initial conditions, and sometimes for real time simulation. From the point of view of this dynamical process, a docking mechanism with many kinematical loops, in spite of its low mass, is more complex than a spacecraft. Some efficient simulation algorithms for such a class of mechanical systems are considered in this paper. For efficiency purposes, they are realized using a specialized symbolic manipulation system. Before simulation, a multi-loop mechanical system is transformed to a tree structure using constrain equations instead of individual joints. This paper states that a possibility of partitioning kinematical loops to controlled and dependent kinematical chains, and a limited number of structure types of the latter are typical for docking mechanisms. This paper proposes a modification to the Composite Rigid Body Algorithm (CRBA) for a transformed tree structure mechanical system with a moving base, and an additional recursive algorithm for the calculation of the force and moment acting on this base. Both of these supplements to CRBA allow linking of separate dynamic equations of a spacecraft and a mechanism. The Articulated Body Algorithm (АВА) is applied to partially open kinematical chains without kinematical loops, which occur in some central type docking mechanisms (the probe-cone type). The АВА calculates by itself the force and moment acting on the mechanism base and the spacecraft.

About the Author

A. A. Yaskevich
Rocket Space Corporation "Energia"
Russian Federation


References

1. Сыромятников В. С. Стыковочные устройства космических аппаратов. М.: Машиностроение. 1984. 216 с.

2. Paine T. O., Fentress C. E. Expanding center probe and drogue. US Patent Office 3526372, 1 Sept., 1970.

3. Langley R. D. Apollo Experience report - the docking system // NASA Technical Note, NASA TN D-6854, June 1972, 53 P.

4. Tchoryk P., Pavlich Jr., Hays J. A., Wassick G., Ritter G. Michigan Aerospace Corporation. Docking system. Patent US 20110058892 Ai, November 1, 2010.

5. Lewis J. L., Monty B. C., Le T. D. et al. NASA. Low-Impact Mating System. Patent US 7543799 Bi, June 9, 2009.

6. IBDM - International Berthing & Docking Mechanism // VRI Newsletter. 2005, April. P. 3.

7. Ghofranian S., Chuang L.-P., Motaghedi P. The Boeing Company, Spacecraft Docking System. Patent US20150266595 Ai, September 24, 2015.

8. Яскевич А. В. Комбинированные уравнения движения для описания динамики стыковки космических аппаратов с помощью системы "штырь-конус" // Изв. РАН. Космические исследования. 2007. Т. 45, № 4. C. 325-336.

9. Featherstone R., Orin D. Robot Dynamics: Equations and Algorithms // Proc. of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, April 2000, P. 826-834.

10. Погорелов Д. Ю. Современные алгоритмы компьютерного синтеза уравнений движения систем тел // Изв. РАН, Теория и системы управления. 2008. № 4. С. 5-15.

11. Степаненко Ю. А. Алгоритм анализа динамики пространственных механизмов с разомкнутой кинематической цепью // Механика машин. 1974, Вып. 44, стр. 77-88.

12. Walker M. W., Orin D. E. Efficient Dynamic Computer Simulation of Robotic Mechanisms // Trans. ASME, Journal of Dynamic Systems, Measurement and Control. 1982. Vol. 104. P. 205-211.

13. Верещагин А. Ф. Метод моделирования на ЦВМ динамики сложных механизмов роботов-манипуляторов // Изв. АН СССР, Техническая кибернетика. 1974. № 6. С. 89-94.

14. Armstrong W. W. Recursive solution to the equation of motion of an n-link manipulator // Proc. of 5th World Congress on Theory of Machines and Mechanisms, (Montreal, July, 1979). 1979. P. 1343-1346.

15. Featherstone R. The calculation of robot dynamics using articulated-body inertias // Int. Journal of Robotic Research. 1983. Vol. 2, N. 1. P. 13-30.

16. Gough V. E., Whitehall S. G. Universal tyre test machine // Proceedings of the FISITA Ninth International Technical Congress, May, 1962. 1962. P. 117-137.

17. Stewart D. A platform with six degrees of freedom // Proceedings of the Institution of Mechanical Engineers. 1965. Vol. 180, Part 1, No. 15. P. 371-386.

18. Hunt K. H. Structural kinematics of in-parallel-actuated robot-arms // Journal of Mechanisms, Transmission and Automation in design. 1983. Vol. 105. P. 705-712.

19. ParalleMIC - the Parallel Mechanisms Information Center. URL: http://www.parallemic.org (дата обращения: 04.09.2017).


Review

For citations:


Yaskevich A.A. Dynamic Equations of Docking Mechanisms. Part 1. Algorithms for Mechanical Systems with Tree Structure. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(1):58-64. (In Russ.)

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)