Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Speed Bigradient Algorithms with a Modified Reference Model in the Control Problem of a Vibratory Gyroscope

https://doi.org/10.17587/mau.17.47-56

Abstract

The article is devoted to the task of adaptive control of a single-axis vibratory gyroscope with a modified reference model of the desired dynamics of the mechanical subsystem. In order to enhance the astatism of the system and ensure smoothness of the controlling forces, additional integrators are connected to the gyroscope inputs. The smooth control algorithms and the algorithms of the sliding mode with a tuning surface for the system with integrator were designed by the speed bi-gradient method. Synthesis of the control algorithms based on employment of an additional modified reference model for the trajectory tracking error of the reference model was proposed. A modified model was selected in the form of a linear Hurwitz system with an input proportional to the discrepancy between the output of the input cascade and the virtual control of the gyroscope. The purposes of the modification were improvement of the identifying properties and reduction of the energy consumption for control. These goals were achieved by a structural correspondence of the model error and modified reference model not only on the intersections of the hypersurfaces (the discrepancy was identically equal to zero), but also outside of them. Note, that entry of a discrepancy either in the unstable reference model of oscillation or in a virtual control does not allow achievement of the specified goal. The design procedure, condition of the applicability, stability analysis of the adaptive control system and the robustness were presented. The theoretical results were proved by a closed-loop system simulation in MATLAB.

About the Authors

Yu. I. Myshlyayev
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation


Tar Yar Myo
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation


References

1. Мышляев Ю. И., Финошин А. В., Тар Яр Мьо. Метод скоростного биградиента в задаче управления вибрационным гироскопом // Мехатроника, автоматизация, управление. 2015. Т. 16, № 11. С. 783-792.

2. Hameed S., Jagannathan. Adaptive force-balancing control of MEMS gyroscope with actuator limits // Proc. of the 2004 American Control Conference. 2004. Vol. 2. P. 1862-1867.

3. Fei J., Batur C. A novel adaptive sliding mode control for MEMS gyroscope // Proc. of 47th IEEE Conference on Decision and Control. 2007.

4. Мышляев Ю. И., Финошин А. В., Тар Яр Мьо. Адаптивное управление одноосным вибрационным гироскопом с интегратором // XII Всероссийское совещание по проблемам управления, Россия, Москва, ИПУ им. В. А. Трапезникова РАН, 16-19 июня 2014 г. С. 2246-2256.

5. Мышляев Ю. И. Метод бискоростного градиента // Известия ТулГУ. Технические науки. 2011. Вып. 5. Ч. 1. С. 168-178.

6. Мышляев Ю. И. Алгоритмы управления линейными объектами в условиях параметрической неопределенности на основе настраиваемого скользящего режима // Мехатроника, автоматизация, управление. 2009. № 2. С. 11-16.

7. Myshlyayev Y. I., Finoshin A. V. Sliding mode with tuning surface in problem of synchronization of two-pendulum system motion // 11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing. University of Caen Basse-Normandie, Caen, France, July 3-5, 2013. P. 221-226.

8. Фрадков А. Л. Адаптивное управление в сложных системах. М.: Наука, 1990.

9. Фрадков А. Л. Схема скоростного градиента в задачах адаптивного управления // Автоматика и телемеханика. 1979. № 9. С. 90-101.

10. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000.

11. Myshlyaev Y. I., Finoshin A. V., Tar Yar Myo. Sliding mode with tuning surface control for MEMS vibratory gyroscope // 6th Internat. Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, Russia, October 6-8, 2014. P. 360-365.


Review

For citations:


Myshlyayev Yu.I., Tar Yar Myo  Speed Bigradient Algorithms with a Modified Reference Model in the Control Problem of a Vibratory Gyroscope. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(1):47-56. (In Russ.) https://doi.org/10.17587/mau.17.47-56

Views: 456


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)