Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Estimates of the Melting Rate of a Consumable Electrode Using a Laser Range Finder for Control of Vacuum Arc Remelting

https://doi.org/10.17587/mau.16.699-704

Abstract

The paper suggests ways to determine the technological parameters of vacuum arc remelting. Usually, the remelting automated control systems measure only the quantities necessary for a direct control, which in certain cases cannot be used to estimate the reliably the technological parameters of melting. Maintaining of certain technological parameters during melting is a prerequisite for obtaining a quality ingot. These parameters include the melting rate. It cannot be measured directly and it is expected that, with certain values of the electrical power given to the furnace, it will be maintained within the technology described limits, which is not always a fact. The subject of this paper is the method for determination of the rate of melting of a consumable electrode, when, due to the design features of the vacuum arc furnace, it is not possible to measure the weight of the consumable electrode and the ingot. This problem can be solved by installation on the viewing window of the furnace of laser range finders, which in their turn help to determine the amount of the remelted electrode. Knowing the volume of the consumable electrode in the previous and current periods of time one can determine the rate of the going on remelting. Determination of the speed of measurement of the laser range finders is not the least task. The relevance of the data is very important. If measurements are done every four minutes, the system allows us to maintain the rate of melting at the desired level. Since the system of maintaining of the supply of electrical power to the furnace is reasonably stable and rapid heating of the electrode without increasing the power is not feasible, we can expect a stable speed of remelting without any significant deviations from the estimated value.

About the Authors

P. A. Livatkin
Institute of Control Sciences of RAS
Russian Federation


K. A. Polozhentsev
Stary Oskol Technological Institute (branch of National Research Technological University "MISiS")
Russian Federation


References

1. Положенцев К. А., Ливаткин П. А., Александров А. Г. Построение модели процесса управления напряжением вакуумной дуговой печи. Сообщение 1 // Известия вузов: Черная металлургия. 2015. № 3. С. 203-206.

2. Лапшин И. В. Автоматизация дуговых печей. М.: Издательство МГУ, 2004. 165 с.

3. Михайлов О. П. Автоматизированный электропривод станков и промышленных роботов. М.: Машиностроение, 1990. 304 с.

4. Ташкинов А. Ю. Разработка математических моделей и алгоритмов и их применение для исследования и усовершенствования процессов вакуумного дугового переплава: Автореф. дис.. канд. техн. наук. Екатеринбург, 2003. 21 с.

5. Нехамин И. С. Разработка системы управления дуговой печью постоянного тока: Автореф. дис.. канд. техн. наук. М., 2009. 20 с.

6. Фомин А. В. Построение имитационной модели дуговой сталеплавильной печи // Изв. тульского госуд. университета. Техн. науки. 2009. № 3. С. 315-321.

7. Q. Jane Wang, Yip-Wah Chung. Vacuum Arc - A Cathodic Arc Operating Without Any Process Gas. Springer US. 2013. P. 3945.

8. Kovaleva M. G., Kolpakov A. J., Poplavsky A. I., Galkina M. E. Effect of vacuum annealing on tribological behavior of nanosized diamond-like carbon coatings produced by pulse vacuum-arc method // Journal of Friction and Wear. 2013. Vol. 34, Iss. 6, P. 481-486.

9. Woodside C. R., King P. E., Nordlund C. Arc Distribution During the Vacuum Arc Remelting of Ti-6A1-4V. Metallurgical and Materials Transactions B. 2013. Vol. 44, Iss. 1. P. 154-165.

10. Zhi-jun Yang, Hong-chao Kou, Xiao-hua Zhao, Jin-shan Li, Rui Hu, Hui Chang, Lian Zhou. Effect of remelting current on molten pool profile of titanium alloy ingot during vacuum arc remelting process // Journal of Shanghai Jiaotong University (Science). 2011. Vol. 16, Iss. 2. P. 133-136.

11. Shmelev D. L., Barengolts S. A., Shchitov N. N. The effect of cathode deuteration on the parameters of vacuum-arc plasma. Technical Physics Letters. 2014. Vol. 40, Iss. 9. P. 783-786.

12. Belyanchikov L. N. Stabilization of vacuum arc remelting of steels and alloys // Russian Metallurgy (Metally). 2012. Vol. 2012, Iss. 12. P. 1017-1021.

13. Blinkov I. V., Volkhonskii O. A., Anikin V. N., Konukhov Yu. V. Nanostructured wear-resistant coatings based on multicomponent nitrides and produced by vacuum-arc ion-plasma deposition // Protection of Metals and Physical Chemistry of Surfaces. 2012. Vol. 48, Iss. 6. P. 649-655.

14. Savostikov V. M., Potekaev A. I., Tabachenko A. N. Physical and technological principles of designing layer-gradient multicomponent surfaces by combining the methods of ion-diffusion saturation and magnetron- and vacuum-arc deposition // Russian Physics Journal. 2011. Vol. 54, Iss. 7. P. 756-764.

15. Ryabchikov A. I., Sivin D. O., Bumagina A. I., Struts V. K. Mechanisms and behavioral regularities of the vacuum-arc microparticles near and on a potential electrode immersed in plasma. Journal of Surface Investigation // X-ray, Synchrotron and Neutron Techniques. 2013. Vol. 7, Iss. 6. P. 1148-1155.

16. Sobol' O. V., Andreev A. A., Grigoriev S. N., Gorban' V. F., Volosova M. A., Aleshin S. V., Stolbovoi V. A. Effect of high-voltage pulses on the structure and properties of titanium nitride vacuum-arc coatings // Metal Science and Heat Treatment. 2012. Vol. 54, Iss. 3-4. P. 195-203.


Review

For citations:


Livatkin P.A., Polozhentsev K.A. Estimates of the Melting Rate of a Consumable Electrode Using a Laser Range Finder for Control of Vacuum Arc Remelting. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(10):699-704. (In Russ.) https://doi.org/10.17587/mau.16.699-704

Views: 356


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)