Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Analysis and Synthesis of Spatially Multidimensional Distributed Systems with a Descriptor Structure of the Mathematical Model

Abstract

The problem of plasma stabilization in a magnetic field is considered. The plant is described by the hydrodynamics model of a weightless potential ideally conducting fluid in a cylindrical coordinate system. The deviation of the perturbed surface, the velocity of deflection of the perturbed surface, the acceleration potential are the functions of state. The acceleration potential on the outer generatrix of cylinder surface is used as the control. The state and control functions depending on the radial and axial coordinates are presented as series with respect to orthonormal systems of functions. Via the spectral method of the distributed systems analysis and synthesis the theoretical positions for the transition from the initial mathematical model described by PDE system to an infinite descriptor system are done. The components of state and control vectors of the descriptor system are the time-varying amplitudes of the spatial harmonics of the series. Expressions for the calculation of the operational differentiation matrices, the operational matrices of factors depending on spatial coordinates depended vectors, the matrices of boundary conditions are given. The matrices of the descriptor plant representation are obtained. The questions of existence, uniqueness, and convergence of the solution of the received descriptor system are investigated. For the plant represented by the descriptor system, a control low described by the differential system is constructed. The solution of the problem is based on the variational approach. The H2 optimization criterion is used. The analysis and synthesis of the closed-loop system via Matlab is done. The results of the analysis indicate that there is no overshoot and oscillation in the system. Calculations based on a limited number of equations show that with the increase in the number of differential and algebraic equations and, respectively, the spatial modes of the expansion of the control functions and the state of the process, the obtained result tends to a certain limit.

About the Authors

V. A. Koval'
Yuri Gagarin State Technical University of Saratov
Russian Federation


M. F. Stepanov
Yuri Gagarin State Technical University of Saratov
Russian Federation


O. Yu. Torgashova
Yuri Gagarin State Technical University of Saratov
Russian Federation


A. A. Samarskij
Yuri Gagarin State Technical University of Saratov
Russian Federation


References

1. Lamour R., Marz R., Tischendorf C. PDAEs and further mixed systems as abstract differential algebraic systems. Technical Report 01-11, Berlin, Inst. of Math., Humboldt Univ. of Berlin, 2001, 22 p.

2. Campbell S. L., Stephen L., Marszalek W. The index of an infinite dimensional implicit system // Mathematical and Computer Modelling of Dynamical Systems. 1999. Vol. 5, N. 1. P. 18-42.

3. Tischendorf C. Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Berlin: Humboldt University of Berlin, 2003. 157 p.

4. Reis T. An infinite dimensional descriptor system model for electrical circuits with transmission lines // Proc. of the 16th International Symposium on Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.

5. Коваль В. А. Спектральный метод анализа и синтеза распределенных управляемых систем. Саратов: Изд-во СГТУ, 1997. 191 c.

6. Сиразетдинов Т. К. Оптимизация систем с распределенными параметрами. М.: Наука, 1977. 479 с.

7. Коваль В. А., Торгашова О. Ю. Решение задач анализа и синтеза для пространственно-двумерного распределенного объекта, представленного бесконечной системой дифференциальных уравнений // Автоматика и телемеханика. 2014. № 2. С. 54-71.

8. Валеев Г. К., Жаутыков О. А. Бесконечные системы дифференциальных уравнений. Алма-Ата: Наука Казахской ССР, 1974. 416 с.

9. Персидский К. П. Об устойчивости решений счетной системы дифференциальных уравнений // Изв. АН Каз. ССР, серия матем. и механ. 1948. Вып. 2. С. 2-35.

10. Торгашова О. Ю. Анализ и синтез пространственно многомерных распределенных систем с учетом дескрипторной структуры представления на основе спектрального метода: дис.. докт. техн. наук. Саратов: Изд-во Сарат. гос. техн. ун-та, 2016. 386 с.

11. Толстов Г. П. Ряды Фурье. М.: Государственное издательство физико-математической литературы, 1960. 392 с.

12. Власова Е. А. Ряды. М.: Изд-во МГТУ им. Н. Э. Баумана, 2006. 611 с.

13. Торгашова О. Ю., Шворнева О. Е. Синтез регулятора пониженной размерности алгебро-дифференциальной системы по критерию Н2-оптимизации // Автоматика и телемеханика. 2014. № 2. С. 156-176.


Review

For citations:


Koval' V.A., Stepanov M.F., Torgashova O.Yu., Samarskij A.A. Analysis and Synthesis of Spatially Multidimensional Distributed Systems with a Descriptor Structure of the Mathematical Model. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(1):3-10. (In Russ.)

Views: 429


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)