Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Algorithm for Quadrocopter Trajectory Control and Flight Modeling

https://doi.org/10.17587/mau.16.530-535

Abstract

In this article the authors propose a trajectory control algorithm for an unmanned aerial vehicle (UAV), which is lifted and propelled by four rotors. The first step in designing of the above mentioned trajectory controller was development of a quadrocopter flight dynamic (math) model and its further linearization. The math model was based on Newton and Euler equation of motion. The next step was designing of a quadrocopter attitude control on the grounds of a linearized dynamic model and angular PD regulator. Then the authors were able to elaborate a trajectory control algorithm by using PD regulator for a trajectory error minimization. Finally, in order to verify the control algorithm the authors built a control system model in Matlab, designed a dynamic model in Universal Mechanism for flight simulation and conducted several experiments. The key idea of the developed trajectory control algorithm is that the control inputs are forces and momentums applied to a quadrocopter, as dynamics of the motor and propeller pairs are essentially faster compared to the rigid body dynamics. One of the major objectives in the attitude control design was to avoid the angels' subtractions in order to prevent singularities. For this reason the authors used rotation matrix error and PD regulator instead of Linear Quadratic Regulator. A set of experiments in the Universal Mechanism and Matlab proved the efficiency of the developed trajectory control algorithm. The paper also presents the modeling details and experiment results.

About the Authors

S. L. Zenkevich
Robotics Training-Research Center, Bauman Moscow State Technical University
Russian Federation


N. K. Galustyan
Robotics Training-Research Center, Bauman Moscow State Technical University
Russian Federation


References

1. Cutler M., How J. P. Actuator Constrained Trajectory Generation and Control for Variable-Pitch Quadrotors // AIAA Guidance, Navigation, and Control Conference (GNC). Minneapolis, Minnesota, August 2012.

2. Lee T., Leok M., McClamroch N. H. "Geometric Tracking Control of a Quadrotor UAV on SE(3). http://acl.mit.edu/papers/2012-uber-conference-submitted.pdf // 49th IEEE Conference on Decision and Control. 2011.

3. Mellinger D., Kumar V. Minimum Snap Trajectory Generation and Control for Quadrotors. http://acl.mit.edu/papers/2012-uber-conference-submitted.pdf. GRASP Lab., University of Pennsylvania, 2011.

4. Kushleyev A., Mellinger D., Kumar V. Towards A Swarm of Agile Micro Quadrotors. GRASP Lab., University of Pennsylvania, 2013.

5. Thorhallur T. B., Dagur Gretarsson. Construction of a Four Rotor Helicopter Control System // S.M. Thesis. Technical University of Denmark, February 2009.

6. Hoffman G. M., Huang H., Waslander S. L., Tomlin C. J. Quadrocopter Helicopter Flight Dynamics and Control: Theory and Experiment // AIAA Guidance, Navigation and Control Conference and Exhibit, August 2007, Hilton Head, South Carolina.

7. Hong S. K. Fuzzy logic based closed-loop strap down attitude system for unmanned aerial vehicle (UAV). Department of Aerospace Engineering, Sejong University, 2005.

8. Зенкевич С. Л., Галустян Н. К. Разработка математической модели и синтез алгоритма угловой стабилизации движения квадрокоптера // Мехатроника, автоматизация, управление. 2014. № 3. С. 27-32.

9. Зенкевич С. Л., Ющенко А. С. Основы управления манипуляционными роботами. М.: Изд-во МГТУ, 2004.

10. Голубев Ю. Ф. Основы теоретической механики. М.: Изд-во МГУ, 2000.

11. Иванов В. А., Медведев В. С. Математические основы теории оптимального и логического управления. М.: Изд-во МГТУ, 2011.

12. Бесекерский В. А., Попов Е. П. Теория систем автоматического управления, 4-е изд., СПб.: Профессия, 2007.

13. Белоконь С. А., Золотухин Ю. Н., Мальцев А. С., Нестеров А. А., Филиппов М. Н. Управление параметрами полета квадрокоптера при движении по заданной траектории // Автометрия. 2012. № 5. С. 32-41.

14. Universal Mechanism - the software for modeling of dynamics // http://www.universalmechanism.com

15. URL: http://youtube/wpBJCMI5GPM


Review

For citations:


Zenkevich S.L., Galustyan N.K. Algorithm for Quadrocopter Trajectory Control and Flight Modeling. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(8):530-535. (In Russ.) https://doi.org/10.17587/mau.16.530-535

Views: 775


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)