Development of a Leg-Wheel Quadruped Robot
https://doi.org/10.17587/mau.26.588-593
Abstract
A significance of quadruped robots lies in their unique design and functionality, which allow them navigating a variety of terrains with remarkable agility and stability. Unlike popular wheeled robots, quadrupeds mimic locomotion of four-legged animals, enabling to traverse uneven surfaces, climb obstacles, and maintain balance in challenging environments. This paper introduces a development of a new leg-wheel hybrid quadruped robot. А peculiar design of the quadruped robot allows the robot to function as a bipedal robot while performing stationary tasks that do not require to change its location in space; at the same time, wheels at legs’ endpoints allow fast locomotion on a flat rigid terrain. The dual functionality enhances its versatility and broadens a range of tasks it can perform, making it suitable for various applications in research and practical applications. Design procedures, modelling methodologies, and static structural analyses performed to finalize a structure of the robot are demonstrated in the paper.
About the Authors
S. SulaimanRussian Federation
PhD, Research Associate,
Kazan, 420008.
A. Pillai
India
PhD Student,
Calicut, 673601, India.
N. Imamov
Russian Federation
Student,
Kazan, 420008.
E. Magid
Russian Federation
Magid Evgeni, PhD, Head of Department,
Kazan, 420008.
References
1. Magid E., Sagitov А. Towards robot fall detection and management for Russian humanoid AR-601, Smart Innovation, Systems and Technologies, 2017, vol. 74, pp. 200—209.
2. Fan Y., Pei Z., Wang C., Li M., Tang Z., Liu Q. А review of quadruped robots: Structure, control, and autonomous motion. Advanced Intelligent Systems, 2024, vol. 6, no. 6, 2300783.
3. Li S., Pang Y., Bai P., Li J., Liu Z., Hu S. Learning locomotion for quadruped robots via distributional ensemble actorcritic, IEEE Robotics and Automation Letters, 2024, vol. 9, no. 2, pp. 1811—1818.
4. Elnoor M., Weerakoon K., Sathyamoorthy A. J., Guan T., Rajagopal V., Manocha D. AMCO: Adaptive multimodal coupling of vision and proprioception for quadruped robot navigation in outdoor environments, arXiv preprint arXiv:2403.13235.
5. Song Z., Zhu J., Xu J. Gaits generation of quadruped locomotion for the CPG controller by the delay-coupled VDP oscillators, Nonlinear Dynamics, 2023, vol. 111, no. 19, pp. 18461—18479.
6. Yeldan A., Arora A., Soh G. S. QuadRunner: А transformable quasi-wheel quadruped, 2022 International Conference on Robotics and Automation (ICRA), 2022, pp. 4694—4700.
7. Xue Y., Yuan X., Wang Y., Yang Y., Lu S., Zhang В. Lywal: a leg-wheel transformable quadruped robot with picking up and transport functions, 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 2935—2941.
8. Mertyüz İ., Tanyıldızı A. K., Taşar B., Tatar A. B., Yakut O. FUHAR: А transformable wheel-legged hybrid mobile robot, Robotics and Autonomous Systems, 2020, vol. 133, p. 103627.
9. Quyen T. T., Trieu N. M., Thinh N. T. Kinematic Analysis of Six-Legged Robot, International Journal of Mechanical Engineering and Robotics Research, 2024, vol. 13, no. 1, pp. 99—104.
10. Shi Y., Zhang M., Li M., Zhang X. Design and analysis of a wheel-leg hybrid robot with passive transformable wheels, Symmetry, 2023, vol. 15, no. 4, p. 800.
11. Kappagantula S. Design and development of a quadruped robot for precision agriculture applications, Precision Agriculture for Sustainability, 2024, pp. 195—220.
12. Raibert M., Blankespoor K., Nelson G., Playter R. BigDog, the rough-terrain quadruped robot, IFAC Proceedings Volumes, 2008, vol. 41, pp. 10822—10825.
13. Qi J., Gao H., Su H., Han L., Su B., Huo M., Yu H., Deng Z. Reinforcement learning-based stable jump control method for asteroid-exploration quadruped robots, Aerospace Science and Technology, 2023, vol. 142, p. 108689.
14. Wang X., Liu J., Zhang T., Zhang J. Applied research of agricultural quadruped robots, 2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT), 2024, pp. 954—957.
15. Scholz C., Moeller K., Ruckelshausen A., Hinck S., Gottinger M. Automatic soil penetrometer measurements and GIS-based documentation with the autonomous field robot platform BoniRob, 12th International Conference of Precision Agriculture, 2014.
16. Lopes M. S. Quadruped manipulator for potential agricultural applications, 2023.
17. Sandeep B., Selvan P. T. Design and development of an autonomous quadruped robot, IOP Conference Series: Materials Science and Engineering, 2021, vol. 1012, p. 012016.
18. Arm P., Zenkl R., Barton P., Beglinger L., Dietsche A., Ferrazzini L. SpaceBok: А dynamic legged robot for space exploration, 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 6288—6294.
19. Sulaiman S., Sudheer А. P. Modelling of torso and dual arms for a humanoid robot with fixed base by using screw theory for dexterous applications, IOP Conference Series: Materials Science and Engineering, 2021, vol. 1132, no. 1, p. 012036.
20. Sulaiman S., Pillai A., Eryomin A., Tsoy T., Magid E. Kinematic modelling, workspace analysis and static structural analysis of a 3 dof manipulator for an elevator automation, 2024 4th International Conference on Computer, Control and Robotics (ICCCR), 2024, pp. 300—304.
21. Sulaiman S., Sudheer A. P., Magid E. Torque control of a wheeled humanoid robot with dual redundant arms, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2024, vol. 238, no. 2, pp. 252—271.
Review
For citations:
Sulaiman S., Pillai A., Imamov N., Magid E. Development of a Leg-Wheel Quadruped Robot. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(11):588-593. https://doi.org/10.17587/mau.26.588-593

















.png)






