Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Features of Intellectualization of Adaptive Control Systems for Complex Dynamic Objects

https://doi.org/10.17587/mau.26.559-567

Abstract

In modern realities, the principle of adaptability becomes an absolute necessity for the normal functioning of complex technical systems. To achieve adaptability, controller synthesis can be based both on the classical theory of automatic control and using various approximate methods of intelligent control. This paper analyzes publications from 2014 to 2024 on new approaches to the design of adaptive control systems for various moving objects with a drive actuator. The first part of the review is devoted to classical methods, including the adaptive controller with a reference model, and its new areas of application in technology (control of a vibration machine and a Stuart platform). The similarities between classical adaptive control and machine learning are noted. The second part presents the results of research based on the joint use of a classical controller and various intelligent methods, such as fuzzy logic, neural networks and machine learning, forming complex multi-component control structures. The results show that the use of such an integrated approach can significantly improve the performance of the main controller, expanding its adaptive capabilities with respect to uncertainties and parameter changes, disturbances and the effects of nonlinearities.

About the Authors

B. R. Andrievsky
St. Petersburg State University; Institute of Problems in Mechanical Engineering of RAS
Russian Federation

St. Petersburg, 199178.



Iu. S. Zaitceva
St. Petersburg State University; Institute of Problems in Mechanical Engineering of RAS
Russian Federation

St. Petersburg, 199178.



J. Liu
St. Petersburg Electrotechnical University "LETI"
Russian Federation

St. Petersburg, 197022.



W. Xu
St. Petersburg Electrotechnical University "LETI"
Russian Federation

St. Petersburg, 197022.



References

1. Annaswamy A. M., Fradkov A. L. А historical perspective of adaptive control and learning, Annual Reviews in Control, 2021, vol. 52, pp. 18—41, DOI: 10.48550/arXiv.2108.11336.

2. Andrievsky B. R., Polyakhov N. D., Putov V. V., Sheludko V. N. Proceedings SPbGETU "LETI", Izvestiya SPbGETU "LETI", 2016, vol. 5, pp. 61—77 (in Russian).

3. Yao L. Adaptive cooperative tracking control for multiple surface vessel systems with random disturbance, Ocean Engineering, 2023, vol. 286, pp. 115528, DOI: 10.1016/j.oceaneng.2023.115528.

4. Li D., Wang Y., Liu Y.-J., Liu L. IBLFs-based adaptive fuzzy control for Continuous Stirred Tank Reactors with full state constraints and actuator faults, Journal of Process Control, 2023, vol. 124, pp. 14—24, DOI: 10.1016/j.jprocont.2023.02.002.

5. Karakaev A. B., Galiev G. A. State Bulletin University of Maritime and River Fleet named after Admiral S. O. Makarova, Vestnik gos. univ-ta morskogo i rechnogo flota im. admirala S. O. Makarova, 2020, vol. 12, no. 1, pp. 139—153 (in Russian).

6. Wang J., Bo D., Ma X., Yan Z., Li Z., Miao Q. Adaptive back-stepping control for a permanent magnet synchronous generator wind energy conversion system, International Journal of Hydrogen Energy, 2019, vol. 44, no. 5, pp. 3240—3249, DOI: 10.1016/j.ijhydene.2018.12.023.

7. Wang S.-Y., Tseng C.-L., Chiu C.-J. Design of a novel adaptive TSK-fuzzy speed controller for use in direct torque control induction motor drives, Applied Soft Computing, 2015, vol. 31, pp. 396—404, DOI: 10.1016/j.asoc.2015.03.008.

8. Noye S., Mulero Martinez R., Carnieletto L., De Carli M., Castelruiz A. A. А review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control, Renewable and Sustainable Energy Reviews, 2022, vol. 153, pp. 111685, DOI: 10.1016/j.rser.2021.111685.

9. Krasovsky А. A. Ed. Handbook on the theory of automatic control, Moscow, Nauka, 1987, 712 p (in Russian).

10. Landau I. Adaptive control: the model reference approach, N. Y., Marcel Dekker, 1979, 432 p.

11. Fradkov А. L. Adaptive control in complex systems: nonsearch methods, Moscow, Nauka, 1990, 292 p.

12. Annaswamy А. Adaptive control and intersections with reinforcement learning, Annual Review of Control, Robotics, and Autonomous Systems, 2023, vol. 6, pp. 65—93, DOI: 10.1146/annurev-control-062922-090153.

13. Tomchina O. P., Gorlatov D. V., Tomchin D. A., Svencickaya T. A. Computer Science and Control Systems, Informatika i sistemy upravleniya, 2018, vol. 3, no. 57, pp. 124—130 (in Russian), DOI: 10.22250/isu.2018.57.124-130.

14. Kruglov S. P., Kovyrshin S. V., Aksamentov D. N. Mechatronics, automation, control, Mekhatronika, Avtomatizaciya, Upravlenie, 2022, vol. 23, no. 9, pp. 451—461 (in Russian), DOI: 10.17587/mau.23.451-461.

15. Zaitceva I., Andrievsky В. Adaptive multiple synchronization and rotors phase shift tracking for two-rotor vibration machine, Materials Physics and Mechanics, 2022, vol. 50, no. 2, pp. 216—225, DOI: 10.18149/MPM.5022022_3.

16. Andrievsky B., Kuznetsov N. V., Kudryashova E. V., Kudznetsova O. A., Zaitceva I. Signal-parametric discrete-time adaptive controller for pneumatically actuated Stewart platform, Control Engineering Practice, 2023, vol. 138, pp. 105616, DOI: 10.1016/j.conengprac.2023.105616.

17. Utkin V. I. Sliding modes and their applications in systems with variable structure, Moscow, Nauka, 1974, 272 p. (in Russian).

18. Myshlyaev Yu. I., Finoshin A. V., Nguyen T. T. Mechatronics, automation, control, Mekhatronika, Avtomatizaciya, Upravlenie, 2020, vol. 21, no. 7, pp. 412—419 (in Russian), DOI: 10.17587/mau.21.412-419.

19. Valenzuela F., Ramirez R., Martinez F., Morfin O., Castaneda C. Super-Twisting Algorithm Applied to Velocity Control of DC Motor without Mechanical Sensors Dependence, Energies, 2020, vol. 13, pp. 6041, DOI: 10.3390/en13226041.

20. Leonov G. A., Andrievsky В. R. Differential equations and control processes, Differencial’nye uravneniya i processy upravleniya, 2012, vol. 3, pp. 1—36, available at: https://diffjournal.spbu.ru/pdf/aw12.pdf (in Russian).

21. Turner M. C., Sofrony J., Prempain E. Anti-windup for model-reference adaptive control schemes with rate-limits, Systems and Control Letters, 2020, vol. 137, pp. 104630, DOI: j.sysconle.2020.104630.

22. Kuzmenko А. A. Mechatronics, automation, control, Mekhatronika, Avtomatizaciya, Upravlenie, 2020, vol. 21, no. 8, pp. 480—488 (in Russian), DOI: doi.org/10.17587/mau.21.480-488.

23. Zaitceva Yu. S. Izv. Universities. Mechanical engineering, Izv. Vuzov. Mashinostroenie, 2024, vol. 1, no. 766 (in Russian), DOI: 10.18698/0536-1044-2024-01-41-56.

24. Magergut V. Z., Sobolev A. V., Egorov A. F., Vent D. P. Synthesis and analysis of adaptive positional automatic control systems: Ed. Academician Vent D. P., Novomoskovsk, RKhTU im. DI. Mendeleev. Novomoskovsk Institute, 2006, 260 p. (in Russian).

25. Varlamov D. B., Savchits А. V. Engineering Bulletin of the Don, Inzhenernyi vestnik Dona, 2019, vol. 1, pp. 1—9 (in Russian).

26. Serebrenny V. V., Boshlyakov A. A., Ogorodnik А. I. Abstracts of the report of the 10th All-Russian multi-conference on management problems, Tezisy doklada 10-i Vserossiyskoy mul’tikonferencii po problemam upravleniya, 2017, pp. 177—180 (in Russian).

27. Sobolev A. V., Soboleva Yu. V. Bulletin of international Academy of Systems Research, Vestnik mezhd. akademii sistemnyh issledovaniy, 2008, vol. 11, no. 1, pp. 66—72 (in Russian).

28. Kryukov O. V., Meshcheryakov V. N., Sychev M. N., Ippolitov V. A. Intelligent AC electric drive systems with relay regulators and adaptive correction devices, Moscow-Vologda, Infra-Engineering, 2022, 140 p. (in Russian).

29. Samoseiko V. F. State Bulletin University of Maritime and River Fleet named after. Academician S. O. Makarova, Vestnik gos. univ-ta morskogo i rechnogo flota im. akademika S. O. Makarova 2019, vol. 11, no. 1, pp. 156—168 (in Russian).

30. Pyrkin A. A., Bobcov A. A., Vedyakov A. A., Bazylev D. N., Sinetova M. M. Mechatronics, automation, control, Mekhatronika, Avtomatizaciya, Upravlenie, 2019, vol. 20, no. 4, pp. 215—218 (in Russian), DOI: 10.17587/mau.20.215-218.

31. Cherny S. P., Soloviev V. A., Buzikaeva A. V., Sukhorukov S. I. Industrial electronics, automation and control systems, Promyshlennaya elektronika, avtomatika i sistemy upravleniya, 2022, vol. 2, no. 55, pp. 32—39 (in Russian)

32. Karandeev D. Yu., Engel E. A. Online journal "Science Studies", Internet-zhurnal "Naukovedenie", 2015, vol. 5, no. 30, pp. 1—9 (in Russian).

33. Zhu Q., Shang H., Lu X., Chen Y. Adaptive sliding mode tracking control of underwater vehicle-manipulator systems considering dynamic disturbance, Ocean Engineering, 2024, vol. 291, pp. 116300, DOI: 10.1016/j.oceaneng.2023.116300.

34. Zhao L., Li Z., Li H., Liu В. Backstepping integral sliding mode control for pneumatic manipulators via adaptive extended state observers, ISA Transactions, 2023, DOI: 10.1016/j.isatra.2023.10.014.

35. Han J. From PID to active disturbance rejection control, IEEE Trans Ind Electron, 2009, vol. 56, no. 3, pp. 900—906, DOI: 10.1109/TIE.2008.2011621.

36. Keshtkar S., Poznyak A. S., Hernandez E., Oropesa А. Automation and Telemechanics, Avtomatika i Telemekhanika, 2017, vol. 7, pp. 57—75 (in Russian), DOI: 10.1134/S0005117917070049.

37. Feng H., Jiang J., Chang X., Yin C., Cao D., Yu H., Li C., Xie J. Adaptive sliding mode controller based on fuzzy rules for a typical excavator electro-hydraulic position control system, Engineering Applications of Artificial Intelligence, 2023, vol. 126, pp. 107008, DOI: 10.1016/j.engappai.2023.107008.

38. Zhang F., Meng D., Li X. Chattering-free adaptive iterative learning for attitude tracking control of uncertain spacecraft, Automatica, 2023, vol. 151, pp. 110902, DOI: 10.1016/j.automatica.2023.110902.

39. Su X., Yang X., Xu Y. Adaptive parameter learning and neural network control for uncertain permanent magnet linear synchronous motors, Journal of the Franklin Institute, 2023, vol. 360, no. 16, pp. 11665—11682, DOI: 10.1016/j.jfranklin.2023.09.016.

40. Na J., Wang S., Liu Y., Huang Y., Xuemei R. Finite-Time Convergence Adaptive Neural Network Control for Nonlinear Servo Systems, IEEE Transactions on Cybernetics, 2019, vol. PP, pp. 1—12, DOI: 10.1109/TCYB.2019.2893317.

41. Sutton R., Barto A., Williams R. Reinforcement learning is direct adaptive optimal control, IEEE Control Systems Magazine, 1992, vol. 12, no. 2, pp. 19—22, DOI: 10.1109/37.126844.

42. Li Z., Wang M., Ma G. Adaptive optimal trajectory tracking control of AUVs based on reinforcement learning, ISA Transactions, 2023, vol. 137, pp. 122—132, DOI: 10.1016/j.isatra.2022.12.003.


Review

For citations:


Andrievsky B.R., Zaitceva I.S., Liu J., Xu W. Features of Intellectualization of Adaptive Control Systems for Complex Dynamic Objects. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(11):559-567. (In Russ.) https://doi.org/10.17587/mau.26.559-567

Views: 29


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)